Uticaj stepena kristaličnosti, sadržaja aluminijum-oksida i natrijum-oksida na kapacitet sorpcije vode NaY zeolitom

Dragana M. Kešelj¹, Dragica Z. Lazić¹, Živan D. Živković², Branko T. Škundrić³, Jelena V. Penavin-Škundrić⁴, Slavica G. Sladojević⁴

¹Univerzitet u Istočnom Sarajevu, Tehnološki fakultet Zvornik, Republika Srpska, BiH

²Univerzitet u Beogradu, Tehnički fakultet u Boru, Srbija

³Akademija nauka i umjetnosti Republike Srpske, Republika Srpska, BiH

⁴Univerzitet u Banjoj Luci, Tehnološki fakultet, Republika Srpska, BiH

Izvod

U radu su prezentovani matematički modeli koji opisuju zavisnost kapaciteta sorpcije vode od stepena kristalizacije, sadržaja Na₂O i Al₂O₃ u NaY zeolitu. Pri različitim uslovima kristalizacije, sintetisan je NaY zeolit iz natrijum-aluminatnog rastvora, vodenog stakla i sumporne kiseline. Dobijeni zeolitski prahovi okarakterisani su na sledeće parametre: Na₂O, Al₂O₃, kapacitet sorpcije vode (*WSC*) i stepen kristaličnosti (*SK*). Regresionom analizom uzoraka zeolitskih prahova, u kojima su se vrednosti kretale za: sadržaj Na₂O u intervalu 13,81 do 16,14%, Al₂O₃ od 21,58 do 27,17%, *SK* od 58,70 do 114,00% i *WSC* od 21,32 do 36,59%, došlo se do zaključka da postoji značajna korelacija između kapaciteta sorpcije vode i stepena kristaličnosti, za razliku od sadržaja Na₂O i sadržaja Al₂O₃ u zeolitskom prahu, čija se korelacija sa kapacitetom sorpcije vode, može zanemariti. Matematički model dobijen linearnom regresionom analizom imao je visok $R^2 = 0,796$, dok je bolji matematički model dobijen nelinearnom regresionom analizom R^2

Ključne reči: regresiona analiza, kapacitet sorpcije vode, stepen kristaličnosti.

Dostupno na Internetu sa adrese časopisa: http://www.ache.org.rs/HI/

Zeoliti su materijali koji su izgrađeni od sistema pora, čije veličine i oblik zavise od samog tipa zeolita tj. od izgleda njegove osnovne izgrađivačke ćelije. Jedan od najznačajnijih sintetičkih zeolita, koji ima strukturu prirodnog fožezita, je NaY zeolit [1-3]. Ima kubnu jediničnu ćeliju, veoma velikih dimenzija, koja se kreće od 24,61-24,85 Å u zavisnosti od sadržaja aluminijuma u jediničnoj ćeliji, katjona i stepena hidratacije. Ćelija je izgrađena od ukupno 192 tetraedra SiO₄ i AlO₄ [4]. Kod fožezitnog tipa zeolita jedinična ćelija predstavlja 9 kubooktaerdara (sodalitnih jedinica), međusobno povezanih preko heksagonalnih prizmi. Ovakva struktura ima veoma razvijen sistem pora. Centar elementarne ćelije ima oblik 26-edra sa četiri prozora u obliku dvanaestočlanog prstena slobodnog dijametra od 0,74 nm (često nazivan superkavez). Sodalitna jedinica (β -kavez) ima unutrašnji prečnik od 6,6 Å i ulaz maksimalnog otvora preko šestočlanih prstenova prečnika 2,6 Å. Dakle, strukturu Y zeolita čine sodalitna jedinica, superkavez i heksagonalna prizma, sa maksimalnim "prozorima" 2,6; 7,4 i 2,6 Å, i prečnicima 6,6; 11,8 i 2,6 Å. Gustina skeleta fožezitnih zeolita je 12,7 T atoma/Å i

Prepiska: D. Kešelj, Tehnološki fakultet Zvornik, Karakaj bb, 75400 Zvornik, Republika Srpska, BiH. E-pošta: draganakeselj@yahoo.com

Rad primljen: 26. januar, 2015

NAUČNI RAD

UDK 66.065.5:51:549.67:66.081

Hem. Ind. 70 (4) 399-407 (2016)

doi: 10.2298/HEMIND150126046K

ima najveću centralnu šupljinu. Smatra se da ovaj tip zeolita može da primi 235 molekula vode[5–8].

Voda u zeolitu može biti hemisorbovana i fizisorbovana [8]. Fizisorbovana voda je posledica slobodnog kretanja molekula vode kroz postojeće pore u zeolitu, dok se hemisorbovana voda javlja kao posledica interakcije dipol molekula vode sa katjonima u strukturi zeolita, pre svega sa jonima natrijuma i aluminijuma. Tako na primer prve adsorbovane molekule vode na najpristupačnijim katjonima NaY zeolita, čine sodalitnu jedinicu dostupnu za vodu. Kompletno punjenje superkaveza i sodalitnog kaveza je dostupno za migraciju nestrukturnih katjona i vode, preko dvostrukog šestočlanog prstena prizme [8-10]. U strukturi zeolita manjka pozitivnog naboja, jer su atomi silicijuma zamenjeni atomima aluminijuma, usled čega se višak negativnog naboja nastoji uravnotežiti sa jednovalentnim katjonima, kao što je Na^{\dagger} . Samo to nastojanje da se uravnoteži naelektrisanje sa većim brojm atoma aluminijuma u strukturi, dovodi do veće hidrofilnosi zeolita. Kako jedinična ćelija kod Y zeolita može da ima 48 do 76 atoma Al, to će i njegovo prisustvo znatno uticati i na adsorpciju vode kod ovog tipa zeolita [2,8].

Difrakcijom X-zraka na prahu se dobija informacija o strukturi zeolita. Položaj svih refleksija u difraktogramu određuju tip zeolita, a poznavajući strukturu moguće je na osnovu refleksija odrediti veličinu jedinične ćelije [11,12]. Fožezitni tip zeolita ima kubnu jediničnu ćeliju,

Rad prihvaćen: 19. jun, 2015

pa se veličina jedinične ćelije (*a*) jednostavno može izračunati na osnovu Milerovih indeksa (*h,k,l*), rastojanje između reflektovanih paralenih ravni koje imaju Milerov indeks *h,k,l* ($d_{(h,k,l)}$) i talasne dužine upadnih X-zraka (λ), koja je 1,54178 Å za CuK α . Jednačina po kojoj se računa veličina jedinične ćelije je:

$$a = d_{(h,k,l)} \sqrt{(h^2 + k^2 + l^2)}$$
(1)

gde je:

$$ad_{(h,k,l)} = \frac{\lambda}{\sin\theta} \tag{2}$$

a ∂ ugao refleksije X-zraka.

Poznavajući veličinu ćelije moguće je pomoću relacije naučnika Breck-Flanigeni saradnici odrediti molarni odnos Si/Al [7]. Intenzitet pika je direktno vezan za stepen kristalizacije. Često se stepen kristaličnosti računa -SK [12]:

SK(%) =

 $=100\sum$ Integralni intenzitet pikova uzorka zeolita/ (3)

∑Integralni intenzitet pikova

referentnog uzorka zeolita

Širina pika je u vezi sa veličinom kristalita, tj. ona može indicirati na kvalitet kristalita, dok ravnija osnovna linija ukazuje na veću kristalizaciju.

Jedna od važnijh osobina zeolita jeste i reverzibilna dehidratacija, tj. sposobnost zeolita da dehidratiše, a da pri tom ne dođe do narušavanja njegove structure, i nakon toga da ponovo adsorbuje vodu. Veličina kojom se iskazuje ova osobina je kapacitet sorpcije vode.

Ispitivanjem adsorpcionih izotermi vode na zeolite različitih molskih odnosa Si/Al, pri visokim stepenima kristaličnosti, utvrđeno je da sa rastom molskog odnosa raste kapacitet sorpcije vode, što se objašnjava jakom vezom sa veličinom i arhitekturom pora [13–18]. Mehanizam adsorpcije različitih jona korišćenjem Monte Karlo simulacije bio je predmet brojnih istraživanja [19–21], ali avaj pristup ne daje kvantifikaciju jačine uticaja pojedinih parametara na ishod procesa adsorpcije. Strukturnu interpretaciju adsorpcionih izotermi vode na

3A zeolitu u cilju statističke generalizacije termodinamike adsorpcionog modela definisali su Restzrepo i Mosquera [21].

Novija istraživanja sve su više usmerena ka definisanju matematičkih modela primenom linearne i nelinearne regresione analize, kojim se nastoji putem odgovarjućih matematičkih modela iskazati veza između pojedinih varijabli, koje su značajne za posmatrane procese [22,23]. Cilj ovog rada je da utvrdi vezu između kapaciteta sorpcije vode (kao zavisne varijable) i stepena kristaličnosti, sadržaja Al₂O₃ i Na₂O (kao nezavisnih varijabli) i izrazi preko odgovarajućeg matematičkog modela. Izabrani modeli statisatičke obrade dobijenih rezultata : linearna i nelinerana regresiona analiza daju mogućnosti realne procene jačine uticaja pojedinih parametara na ishode proučavanog procesa sorpcije vode u NaY zeolitu, kao i vrednosti koeficijenata determinacije, kao pouzdanih ocena validnosti definisanih matematičkih modela [23].

EKSPERIMENTALNI DEO

Za eksperimentalna istraživanja, čiji su rezultati prezentovani u ovom radu, korišteni su aluminijum-hidroksid, natrijum-hidroksid, vodeno staklo, natrijum-aluminatni rastvor (sintetički i iz procesa proizvodnje glinice po Bayer tehnologiji) i H₂SO₄ kiselina (Tabela 1).

Aluminijum-hidroksid i natrijum-hidroksid su korišteni kao sirovine za dobijanje sintetičkog aluminata. Sintetički aluminat dobijen je rastvaranjem aluminijumhidroksida sa natrijum-hidroksidom na temperaturi ključanja rastvora i imao je koncentraciju Na₂O = 395,6 g/dm³ i Al₂O₃ = 81,9 g/dm³.

Za poređenje dobijenih rezultata tokom sinteze u ovom radu korišćen je komercijalni zeolit CBV 100.

Eksperimentalni dio ovog rada izveden je u laboratoriji Fabrike glinice "Alumina" u Zvorniku i laboratorijama Tehnološkog fakulteta Zvornik. Za izvođenje sinteza zeolita NaY korišćena je:

 aparatura za dobijanje hidrogela, koja se sastojala od: termostatiranih bireta za doziranje sirovina, reakcione posude i stubne mešalice,

reaktor od polipropilena zapremine 500 cm³, koji je služio za kristalizaciju,

Tabela 1. Hemijski sastav sirovina korištenih u sintezama NaY zeolita

Table 1. The chemical	compositon of	raw materials used	in sythesis of NaY	' zeolite

Red. br.	Sirovina	Karakteristike
1.	Aluminijum-hidroksid	Sadržaj: Al ₂ O ₃ = 64,83%; SiO ₂ = 0,009%; Fe ₂ O ₃ = 0,012%; Na ₂ O _{uk} = 0,22%; CaO = 0,017%; gubitak žarenjem na 1000 °C: 34,89%
2.	Natrijum-hidroksid	48,78%, ρ = 1,514 g/cm ³
3.	Vodeno staklo	Sadržaj: Na ₂ O=159,3 g/dm ³ ; SiO ₂ =380,4 g/ dm ³ ; p=1,430 g/ cm ³
4.	Aluminatni rastvor iz procesa proizvodnje glinice po Bayer tehnologiji	Sadržaj: Na ₂ O _k = 155 g/dm ³ ; Al ₂ O ₃ = 161,2 g/dm ³ ; ρ = 1,310 g/cm ³
5.	H ₂ SO ₄	96%, ρ = 1,840 g/ cm ³

 vazdušni termostat, za obezbeđivanje temperature kristalizacije.

Sve sinteze su izvedene hidrotermalnim putem, uz dodatak "klica" (seed gel) u cilju skraćenja vremena kristalizacije. Klice su mešane sa vodom, odgovarajućom količinom vodenog stakla, aluminatnog rastvora i sumpornom kiselinom, do odgovarajućih molskih odnosa. Molski odnosi sinteza su bili:

 $\begin{array}{l} 2Na_2O:Al_2O_3:6\ SiO_2:96H_2O\\ 2Na_2O:Al_2O_3:6\ SiO_2:120H_2O\\ 2Na_2O:Al_2O_3:6,5SiO_2:120H_2O\\ 2,5Na_2O:Al_2O_3:6SiO_2:120H_2O\\ 3Na_2O:Al_2O_3:6SiO_2:120H_2O \end{array}$

U cilju dobijanja zeolitskih prahova različitog stepena kristaličnosti, sve sinteze su izvođene na temperaturi od 105 °C, ali su imale različita vremena kristalizacije (12, 20 i 24 h). Kao rezultat sinteza, dobijani su prahovi zeolita NaY različitog hemijskog sastava i stepena kristalizacije. Dobijenom zeolitskom prahu, rađena je hemijska anliza, rendgenska difrakciona analiza i apsorpcija vode. Hemijskom analizom, u dobijenom prahu, određivan je:

• Sadržaj Na₂O (%), metodom atomsko-apsorpcionom spektroskopijom na aparatu Perkin-Elmer 4000.

- Sadržaj Al_2O_3 (%), potenciometrijskom titracijom na aparatu tipa "Titripol".

Mineraloška analiza dobijenog praha je rađena

difrakcionom analizom X-zraka na difraktometaru Philips, PW1710, uz upotrebu Cu antikatoda (40 V, 50 mA, K α = 0,15405 µm). Na osnovu dobijenih difraktograma dalje je određivan stepen kristaličnosti. Priprema uzoraka i odabir pikova za računanje stepena kristaličnosti rađen je prema standardu ASTM D 3906-03.

Kapacitet sorpcije vode (*water sorption capacity*) zeolita određivan je na uzorku, koji je predhodno dehidratisan žarenjem na 500 °C. Pritisak u aparaturi je bio 24±1 mbar, dok je temperatura na kojoj se određivao kapacitet sorpcije bila 20±1 °C . Na tim uslovima uzorak je sorbovao vodu tokom 5 sati.

Kapacitet sorpcije vode se računao po izrazu:

$$WSC = 100 \frac{m_{\rm v} - m_0}{m_0}$$
(4)

WSC – kapacitet sorpcije vode (%), m_0 – masa suvog (g), m_v – masa uzorka nakon sorpcije vode (g).

REZULTATI I DISKUSIJA

U ovom radu predstavljeni su matematički modeli, koji opisuju zavisnost kapaciteta sorpcije vode od stepena kristalizacije i sadržaja Na₂O i Al₂O₃ u NaY zeolitu. Sinteze su rađene sa natrijum-aluminatnim rastvorom iz Bayer procesa proizvodnje glinice, vode-

Tabela 2. Stepen kristaličnosti (X₁), hemijski sastav (Na₂O- X₂, Al₂O₃-X₃) i sorpcija vode (Y) prahova NaY zeolita dobijenih na temperaturi kristalizacije 100°C, pri različitim molskim odnosima i vremenima kristalizacije

Table 2. The degree of crystallinity(X_1), chemical composition (Na_2O - X_2 , Al_2O_3 - X_3) and water sorption capacity (Y) of the powders NaY zeolite, obtained at temperature of crystallization 100°C, different molar ratios and time of crystallization

Red. br.	Molski odnos	Vreme kristalizacije, h	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	Y
1.	$2Na_2O\cdot Al_2O_3\cdot 6SiO_2\cdot 96H_2O$	20	104,00	14,29	22,60	33,56
2.		12	98,00	14,43	23,22	35,11
3.		24	113,00	14,23	22,04	36,59
4.		12	58,70	15,35	22,36	22,24
5.		24	98,00	14,99	23,98	34,33
6.		24	88,00	14,85	22,84	33,79
7.		24	97,00	15,36	23,78	34,16
8.		12	68,00	14,74	22,62	21,32
9.		24	91,00	14,69	23,00	29,22
10.	$2Na_2O\cdot Al_2O_3\cdot 6 SiO_2\cdot 120H_2O$	24	86,00	14,70	23,53	29,40
11.		12	61,00	14,80	22,02	21,60
12.		24	107,00	15,24	23,51	34,11
13.		24	114,00	15,59	23,38	33,47
14.		24	110,00	15,56	23,67	33,18
15.		24	114,00	14,71	23,15	34,27
16.		24	111,00	14,44	23,66	32,06
17.	$3Na_2O \cdot Al_2O_3 \cdot 6SiO_2 \cdot 120H_2O$	24	95,00	16,14	27,17	35,14
18.	2,5Na ₂ O·Al ₂ O ₃ ·6SiO ₂ ·120H ₂ O	24	102,00	15,43	25,47	34,52
19.		24	93,00	15,55	25,48	34,25
20.	2Na ₂ O·Al ₂ O ₃ ·6,5SiO ₂ ·120H ₂ O	24	114,00	13,97	21,97	31,62
21.		24	113,00	13,81	21,58	32,81

nog stakla i H₂SO₄ kiseline, pri različitim molskim odnosima i vremenima kristalizacije (tabela 2). U cilju dobijanja zavisnosti između kapaciteta sorpcije vode i varijabli koje utiču na njega, u daljem tekstu uvedene su oznake:

Y – kapacitet sorpcije vode, WSC (%),

X₁ – stepen kristaličnosti (%),

 X_2 – sadržaj Na₂O (%) i

 X_3 – sadržaj Al₂O₃ (%).

Stepen kristaličnosti je određivan rendgenskom difrakcijonom analizom, poređenjem intenziteta osam karakterističnih refleksija ("integralni intenzitet") sintetisanih zeolita (slika 1b-g) sa osam karakterističnih reflefsija (prema ASTM D 3906-03 standardu) komercijalnog uzorka CBV 100 (slika 1a) i računato po izrazu (3). Prema standardu ASTM D 3906-03 karakteristični difrakcioni uglovi 2 θ na kojima su uzimani integralni intenziteti pikova su: 15,7±0,2; 18,7±0,2; 20,4±0,3; 23,7±0,4; 27,1±0,5; 30,8±0,5; 31,5±0,5 i 34,2±0,6.

Dobijeni rezultati su prikazani u tabeli 2.

Stepen kristaličnosti za posmatrane uzorke zeolita kretao se u intervalu od 58,70 do 114,00% (slika 1. b-58,70%, c-88,00%, d-97,00%, e-68,00%, f-107,00%, g-114,00%), jer je za računanje kao referentni uzorak uzet komercijalni zeolit NaY CBV 100, čiji je stepen kristaličnosti prema deklaraciji proizvoda bio veći od 90%.

Statistička obrada dobijenih rezultata

U cilju utvrđivanja analitičke zavisnosti WSC-Y od varijabli stepena kristaličnosti (X_1) , sadržaja Na₂O (X_2) i sadržaja Al₂O₃ (X₃), izvršena je statistička obrada dobijenih rezultata korištenjem linearne regresione analize (LRA) i kvadratne nelinearne regresione analize (KNRA).

Rezultati deskriptivne statistike dobijenih eksperimentalnih rezultata iz tabele 2 prikazani su u tabeli 3, a međusobni korelacioni odnos zavisne varijable (Y) i nezavisnih varijabli $(X_1 - X_3)$ prikazani su u tabeli 4.

Tabela 3. Deskriptivna statistika za ulazne $(X_1 - X_3)$ i izlazne (Y)vrednosti prahova NaY zeolita dobijenih pri različitim molskim odnosima i vremenima kristalizacije, broj sinteza zeolite: 21; minimum – minimalna vrednost varijabli X₁, X₂, X₃, Y u posmatranom broju sinteza N, maksimum – maksimalna vrednost varijabli X₁, X₂, X₃, Y u posmatranom broju sinteza N Table 3. Descriptive statistics for the input $(X_1 - X_3)$ and the output (Y) values of the powders NaY zeolite obtained under different molar ratios and time of crystallization

Promenljiva	Minimum	Maksimum	Srednja	Standardna
,			vrednost	devijacija
<i>X</i> ₁	58,7	114,0	96,938	17,0027
<i>X</i> ₂	13,81	16,14	14,8986	0,59813
<i>X</i> ₃	21,58	27,17	23,3824	1,33188
Y	21,32	36,59	31,7500	4,54072

Rezultati korelacione analize, prikazani u tabeli 4, ukazuju na zanačajan nivo korelacije između Y – WSC i $X_1 - SK$ (Pearson korelacija, PC = 0,830 i statistička značajnost, p = 0,000) i X₂ (Na₂O) i X₃ (Al₂O₃) (PC = 0,763 i p = 0,000). Ostale korelacije, $Y-X_2$ (*PC*=0,061 i p == 0,794), $Y-X_3(PC = 0,392 \text{ i } p = 0,079) \text{ i } X_1-X_2 (PC = 0,079)$ i p = 0,733) imaju vrlo niske vrednosti za PC bez sta-

Slika 1. Difraktogrami uzoraka zeolita (a – CBV100; b – SK = 58,7%; c – SK = 88%; d – SK = 97%; e – SK = 68%; f – SK = 107%; q - SK = 114%).

Figure 1. Diffractogram of the samples of NaY zeolite(a – CBV100; b – SK = 58.7%; c – SK = 88%; d – SK = 97%; e – SK = 68%; f - SK = 107%; q - SK = 114%).

tističke značajnosti. Dobijeni rezultati ukazuju da *SK* u značajnoj meri utiče na *WSC*, kao i sadržaj Na₂O i Al₂O₃ u NaY zeolitu. Obradom dobijenih rezultata metodom LRA, definisane su analitičke zavisnosti $Y = f(X_1)$; $Y = f(X_2)$; $Y = f(X_3)$; $Y = f(X_1,X_2)$; $Y = f(X_1,X_3)$; $Y = f(X_2,X_3)$ i $Y = f(X_1,X_2,X_3)$, koje imaju sledeće oblike:

$$Y = 10,268 + 0,222X_1, R^2 = 0,689$$
(5)

 $Y = 24,825 + 0,460X_2, R^2 = 0,004$ (6)

$$Y = 0,506 + 1,336X_3, R^2 = 0,154$$
(7)

$$Y = -18,487 + 0,235X_1 + 1,843X_2, R^2 = 0,745$$
(8)

$$Y = -15.226 + 0.215X_1 + 1.119X_3, R^2 = 0,746$$
(9)

$$Y = -30,351 - 4,335X_2 + 2,822X_3, R^2 = 0,290$$
(10)

$$Y = -11,309 + 0,210X_1 - 0,517X_2 + 1,301X_3,$$

$$R^2 = 0,797$$
(11)

Tabela 4. Korelaciona analiza za ulazne (X_1-X_3) i izlazne (Y) vrednosti prahova NaY zeolita dobijenih pri različitim molskim odnosima i vremenima kristalizacije

Table 4. Correlation analysis for the input (X_1-X_3) and the output (Y) values of the powders NaY zeolite obtained under different molar ratios and time of crystallization

Parametri		Y	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃
γ	Pearson korelacija (PC)	1	0,830 ^{**}	0,061	0,392
	Statistička značajnost	_	0,000	0,794	0,079
<i>X</i> ₁	Pearson korelacija (PC)	-	1	-0,207	0,079
	Statistička značajnost	-	-	0,368	0,733
<i>X</i> ₂	Pearson korelacija (PC)	-	-	1	0,763 ^{**}
	Statistička značajnost	-	-	-	0,000
X 3	Pearson korelacija (PC)	-	-	-	1
	Statistička značajnost	-	_	-	_

Dobijeni rezultati metodom LRA ukazuju na to da zavisnosti date jednačinama (5)–(10) sa niskim vrednostima R^2 predviđaju zanemarljiv uticaj X_2 i X_3 pojedinačno ili zajedno nemaju direktnu korelaciju sa Y - WSC.

Imajući u vidu vrednosti *PC* i *p* iz tabele 4, očigledno je da na *SK* dominantan uticaj ima odnos X_2/X_3 (Na₂O/Al₂O₃) koji direktno utiče na $X_1(SK)$, a od *SK* zavisi Y - WSC.

U cilju definisanja zavisnosti sa većim vrednostima R^2 i pouzdanijim predikcijama *WSC* od navedenih varijabli, izvršena je kvadratna nelinearna regresiona analiza (KNRA) dobijenih eksperimentalnih podataka, a dobijeni eksperimentalni podaci pokazani su u tabeli 5.

Analitički oblici, dobijeni metodom KNRA, zavisnosti $Y = f(X_1)$; $Y = f(X_2)$; $Y = f(X_3)$; $Y = f(X_1, X_2)$; $Y = f(X_1, X_3)$; $Y = f(X_2, X_3)$ i $Y = f(X_1, X_2, X_3)$, i $X_1 = f(X_2, X_3)$ imaju sledeće oblike:

 $Y = -35,643 + 1,309X_1 - 0,006X_1^2, R^2 = 0,845$ (12)

$$Y = 806,385 - 104,438X_2 + 3,515X_2^2, R^2 = 0,102$$
(13)

$$Y = -123,626 + 11,641X_3 - 0,213X_3^2, R^2 = 0,166$$
(14)

$$Y = -527,064 + 3,579X_1 + 48,909X_2 - 0,149X_1X_2 - 0,006X_1^2 - 1,084X_2^2, R^2 = 0,896$$
(15)

 $Y = 66,571 + 0.932X_1 - 7,501X_3 + 0.012X_1X_3 - 0.005X_1^2 - 0.141X_3^2, R^2 = 0.864$ (16)

$$Y = 1265,849 - 239,603X_2 + 44,492X_3 + 7,579X_2X_3 + 2,056X_2^2 - 3.294X_3^2, R^2 = 0,621$$
 (17)

$$Y = -1056,378 + 2,712X_1 + 177,048X_2 - 37,782X_3 - 0,004X_1X_2X_3 - 0,006X_1^2 - 5,527X_2^2 + 0,897X_3^2, R^2 = 0,912$$
(18)

$$X_1 = 7168,633 - 1416,256X_2 + 290,363X_3 - 37,782X_3 - 21,512X_2X_3 + 30,411X_2^2 - 12,814X_3^2, R^2 = 0,719$$
(19)

Dobijene vrednosti R^2 korišćenjem KNRA (jednačine (10)–(16)) u odnosu LRA pokazuje bolje fitovanje u slučaju korištenja KNRA.

Zavisnosti dobijene pomoću KNRA pokazuju zadovoljavajući nivo pouzdanosti za predikciju Y - WSC od karakteristika Y zeolita, $X_1 - SK$, $(X_1 - SK \ i \ X_2 - \%Na_2O)$, $(X_1 - SK \ i \ X_3 - \%Al_2O_3)$ i (X_1, X_2, X_3) . Grafički prikaz ovih zavisnosti dat je na slikama 2–7.

Takođe, koeficijent determinacije za zavisnost $X_1 - SK$ od sadržaja $X_2 - \%Na_2O$ i $X_3 - \%Al_2O_3$, ima zadovoljavajuću vrednost $R^2 = 0,719$.

Dobijeni koeficijenti determinacije imaju opadajući niz:

 $R^{2}_{18}(0,912) > R^{2}_{15}(0,896) > R^{2}_{16}(0,864) > R^{2}_{12}(0,845) > R^{2}_{17}(0,621) > R^{2}_{14}(0,166) > R^{2}_{13}(0,102)$, što ukazuje na opadajući niz nivoa fitovanja zavisnoasti (18) \rightarrow (15) \rightarrow (16) \rightarrow (12) \rightarrow (17) \rightarrow (14) \rightarrow (13). Očigledno je da $X_{1} - SK$ i odnos Na₂O/Al₂O₃ (X_{2}/X_{3}) ima najbolju predikciju WSC.

Dobijena zavisnost $Y = (X_1, X_2, X_3)$ sa $R^2 = 0,912$ pokazuje veliki stepen fitovanja primenom analitičkog oblika zavisnosti, koji je prikazan jednačinom (18), koja predstavlja pogodan oblik za predikciju *WSC* od sastava NaY zeolita (%Na₂O i %Al₂O₃) i njegove kristaličnosti. Najveći koeficijent determinacije ($R^2 = 0,912$, slika 6) je dobijen u modelu kvadratne zavisnosti kapaciteta sorpcije od stepena kristaličnosti, sadržaja Na₂O i sadržaja Al₂O₃. Dobijeni model se može posmatrati kao dopunjeni linearni model gde se vidi da pozitivan uticaj na kapacitet sorpcije vode imaju X_1 i X_2 , prvog eksponenta, i X_3 na drugi eksponent, dok negativan uticaj ima X_3 , prvog eksponenta, X_1 i X_2 na drugi eksponent.

Dobijeni rezultati ukazuju da sa porastom *SK* raste *WSC*, slika 2. Stepen kristaličnosti zavisi od sadržaja Al_2O_3 i Na_2O , što na indirektan način utiče na *WSC*. Optimalan sastav NaY zeolita, kada se postižu maksimalne vrednosti *SK* od (100–114%), je pri sadržaju Na_2O : 13–14% i sadržaju Al_2O_3 : 21–23%, koji obezbeđuju *WSC* u granicama 34–36%.

Tabela 5. Kvadratni modeli sorpcije vode (Y) u zavisnosti od stepena kristaličnosti (X₁), sadržaja Na₂O (X₂) i Al₂O₃ (X₃) Table 5. The square models of water sorption capacity (Y) depending on the degree of crystallinity (X₁) and contents of Na₂O (X₂) and Al_2O_3 (X₃)

Madal	Variiahla	De	romotri	Standardna	Interval poverenja, 95%		
Model	varijable	Po	irametri	greška	Donja granica	Gornja granica	
1.	<i>X</i> ₁	А	-35,643	11,025	-58,805	-12,480	
		В	1,309	0,256	0,772	1,847	
		С	-0,006	0,001	-0,009	-0,003	
2.	<i>X</i> ₂	А	806,385	557,165	-364,175	1976,945	
		В	-104,438	74,729	-261,439	52,563	
		С	3,515	2,503	-1,744	8,774	
3.	Х3	А	-123.626	237.600	-622.806	375.553	
	5	В	11.641	19.687	-29.720	53.003	
		C	-0.213	0.407	-1.067	0.641	
4	X.	A	-527 064	354 996	-1283 720	229 592	
	X1 X2	B	3 579	1 160	1 107	6 051	
	~2	C	48.909	41.861	-40.315	138.134	
		D	-0.149	0.072	-0.301	0.004	
		Е	-0,006	0,001	-0,009	-0,003	
		F	-1,084	1,243	-3,734	1,565	
5.	<i>X</i> ₁	А	66,571	272,354	-513,938	647,081	
	X ₃	В	0,932	1,203	-1,631	3,495	
		С	-7,501	18,614	-47,175	32,174	
		D	0,012	0,067	-0,131	0,154	
		Ε	-0,005	0,003	-0,011	0,000	
		F	0,141	0,272	-0,439	0,720	
6.	<i>X</i> ₂	А	1265,849	505,227	188,985	2342,714	
	<i>X</i> ₃	В	-239,603	97,508	-447,438	-31,769	
		С	44,492	30,264	-20,013	108,998	
		D	7,579	4,203	-1,381	16,538	
		Ε	2,056	5,135	-8,888	13,001	
		F	-3,294	1,097	-5,631	-0,956	
7.	<i>X</i> ₁	Α	-1056,378	482,925	-2099,675	-13,082	
	<i>X</i> ₂	В	2,712	0,756	1,078	4,346	
	<i>X</i> ₃	С	177,048	83,076	-2,427	356,523	
		D	-37,782	20,288	-81,611	6,048	
		Ε	-0,004	0,002	-0,008	0,001	
		F	-0,006	0,002	-0,010	-0,002	
		G	-5,527	2,711	-11,383	0,329	
		Н	0,897	0,422	-0,015	1,810	
8.	X_1 – zavisna	A	7168,633	1628,194	3698,220	10639,047	
	varijabla	В	-1416,256	314,239	-2086,041	-746,471	
	<i>X</i> ₂	С	290,363	97,530	82,482	498,244	
	X ₃	D	21,512	13,547	-7,362	50,386	
		Ε	30,411	16,548	-4,861	65,682	
		F	-12,814	3,534	-20,348	-5,281	

Slika 2. Zavisnost između eksperimentalno određenih i izračunatih vrednosti kapaciteta sorpcije vode prahova NaY zeolita datih jednačinom (12).

Figure 2. The relationship between the experimentally determined and calculated values of water sorption capacity of the powders NaY zeolite given by the equation (12).

Slika 3. Zavisnost između eksperimentalno određenih i izračunatih vrednosti kapaciteta sorpcije vode prahova NaY zeolita datih jednačinom (15).

Figure 3. The relationship between the experimentally determined and calculated values of water sorption capacity of the powders NaY zeolite given by the equation (15).

Slika 4. Zavisnost između eksperimentalno određenih i izračunatih vrednosti kapaciteta sorpcije vode prahova NaY zeolita datih jednačinom (16).

Figure 4. The relationship between the experimentally determined and calculated values of water sorption capacity of the powders NaY zeolite given by the equation (16).

Slika 5. Zavisnost između eksperimentalno određenih i izračunatih vrednosti kapaciteta sorpcije vode prahova NaY zeolita datih jednačinom (17).

Figure 5. The relationship between the experimentally determined and calculated values of water sorption capacity of the powders NaY zeolite given by the equation (17).

Slika 6. Zavisnost između eksperimentalno određenih i izračunatih vrednosti kapaciteta sorpcije vode prahova NaY zeolita datih jednačinom (18).

Figure 6. The relationship between the experimentally determined and calculated values of water sorption capacity of the powders NaY zeolite given by the equation (18).

Slika 7. Zavisnost između eksperimentalno određenih i izračunatih vrednosti kapaciteta sorpcije vode prahova NaY zeolita datih jednačinom (19).

Figure 7. The relationship between the experimentally determined and calculated values of water sorption capacity of the powders NaY zeolite given by the equation (19).

ZAKLJUČAK

Izvedena ispitivanaja uticaja sastava NaY zeolita (%Na₂O i %Al₂O₃) kao i *SK* na *WSC*, ukazuju da dominantan uticaj na *WSC* ima *SK* (*PC* = 0,830 i *p* = 0,000) i sadražaj Al₂O₃ (*PC* = 0,763 i *p* = 0,000). Optimalani sastav NaY zeolita sa Na₂O : 13–14% i sadržaju Al₂O₃: 21– –23%, uz stepen kristaličnosti 100–114%, obezbeđuje maksimalne vrednosti *WSC* u granicama od 34–36%. Dobijena zavisnost $Y = f(X_1, X_2, X_3)$, u obliku kvadratne funkcije (KNRA), obezbeđuje pouzdanu predikciju *WSC* od *SK* i sadržaja Na₂O i Al₂O₃ sa vrednošću $R^2 = 0,912$, iako je broj uzoraka bio ograničen.

LITERATURA

- M.M. Rahman, M.B. Awang, A.M. Yusof, Preparation, Characterization and Application of Zeolite-Y (Na-Y) for Water Filtration, Aust. J. Basic Appl. Sci. 6 (2012) 50–54.
- [2] D. Milić, D. Opsenica, B. Adnađević, B. Šolaja, NaY Zeolite: A Useful Catalyst for Nitrile Hydrolysis, Molecules 5 (2000) 118–126.
- [3] J. Weitkamp, L. Puppe. Catalysis and Zeolites: Fundamentals and Applications, Springer, New York, 1999.
- [4] R. Xu, W. Pang, J. Yu, Q. Huo, J. Chen, Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure, John Wiley & Sons, New York, 2009.
- [5] http://www.iza-structure.org/
- [6] J.A. Kaduk, J. Faber, Crystal Structure of Zeolite Y as a Function of Ion Exchange, Rigaku J. 2 (1995) 14–34.
- [7] H.V. Bekkum, E.M. Flanigen, P.A. Jacobs, J.C. Jansen. Introduction to Zeolite Science and Practice, 2nd ed., Elsevier, Amsterdam, 2001.
- [8] K. Byrappa, M. Yoshimura, Hand Book of hydrothermal Technology: A Technology for Crystal Growth and Materials Processing, William Andrew Inc, Norwich, 2001.
- [9] J.P. Bellat, C. Paulin, M. Jeffroy, A. Boutin, J.L. Paillaud, J. Patarin, A. Di Lella, A. Fuchs, Unusual Hysteresis Loop in the Adsorption–Desorption of Water in NaY Zeolite at Very Low Pressure, J. Phys. Chem., C **113** (2009) 8287– –8295.
- [10] A.W. Chester, E.G. Derouane, Eds., Zeolite Characterization and Catalysis, A Tutorial, Springer, New York, 2009.
- [11] ASTM Standard Test Method: D 3942-03 TM for Determination of the Unit Cell Dimension of a Faujasite-Type Zeolite, ASTM Standard Test Method: D 3906-03 TM for Determination of Relative Zeolite Diffraction Intensities of a Faujasite-Type Zeolite.
- [12] A. Gola, B. Rebours, E. Milazzo, J. Lynch, E. Benazzi, S. Lacombe, L.Delevoye and C. Fernandez, Effect of Leaching Agent in the Dealumination of Stabilized Y Zeolites, Micropour. Mesopour. Mater. 40 (2000) 73–83.
- [13] K. Ojha, N.C. Pradhan, A.N. Samanta, Zeolite from Fly Ash: synthesis and Characterization, Bull. Mater. Sci. 27 (2004) 555–564.
- [14] Y. Iwai, T. Yamanishi, Influence of Framework Silica-to-Alumina Ratio on the Tritiated Water Adsorption and Desorption Characteristics of NaX and NaY Zeolites, J. Nucl. Sci. Technol. 45 (2008) 532–540.
- [15] K. Tsutsumi, K. Mizoe, Heat of adsorption of water on hydrophobic zeolite, Colloids Surfaces 37 (1989) 29–38.
- [16] W. Lutz, C.H. Rüscher, Th.M. Gesing, M. Stöcker, S. Vasenkov, D.Freude, R. Gläser, C. Berger, Investigations

of the Mechanism of Dealumination of Zeolite Y by Steam: Tuned Mesopore Formation *versus* The Si/Al ratio, Proceedings of the 14^{th} International Zeolite Conference, Cape Town, South Africa, 2004, pp. 1411– -1417.

- [17] A. Shalhbazi, R.G. Olmos, F.D. Kopinke, P.Z. Poor, A. Georgi, Natural and sythetic zeolites in adsorption/oxidation process to remove surfactant molecules from water, Sep. Purif. Technol. **127** (2014) 1–9.
- [18] L. Nasrasimhan, B. Kuchta, O. Scheaf, P. Brunet, P. Boulet, Mechanism of adsorption of p-cresol uremic toxin into faujasite zeolite in presence of water andsodium cations-A Monte Carlo study, Micropour. Mesopour. Mat. **173** (2013) 70–77.
- [19] M. Rahmati, H. Modarress, Grand canonical Monte Carlo simulation of isotherm for hydrogen adsorption on

nanopouros siliceous zeolites at room temperature, App. Surf. Sci. **255** (2009) 4773–4778.

- [20] M.L. Restrepo, M.A.Mosquera, Accurate correlation, thermochemistry, andstructural interpretation of equilibrium adsorption isotherms of water vapor in zeolite 3A by means of a generalized statistical thermodynamic adsorption model, Fluid Phase Equilib. 283 (2009) 73–88.
- [21] Ž. Živković, I. Mihajlović, Dj. Nikolić, Artificial neural network method applied of the nonlinear multivariante problems, Serb. J. Manag. 4 (2009) 137–149.
- [22] P. Đorđević, I. Mihajlović, Ž. Živković, Comparasion of linear and nonlinear ststistics methods applied in industrial process modeling procedure, Serb. J. Manage. 5 (2010) 189.

SUMMARY

EFFECT OF DEGREE OF CRYSTALLINITY AND THE CONTENTS OF ALUMINIUM OXIDE AND SODIUM OXIDE ON WATER SORPTION CAPACITY IN NaY ZEOLITE

Dragana M. Kešelj¹, Dragica Z. Lazić¹, Živan D. Živković², Branko T. Škundrić³, Jelena V. Penavin-Škundrić⁴, Slavica G. Sladojević⁴

¹University of East Sarajevo, Facluty of Technology Zvornik, Republic of Srpska

²University of Belgrade, Techical facuty in Bor, Republic of Serbia

³Academy of Sciences and Arts of the Republic of Srpska, Republic of Srpska, Bosnia and Hercegovina
⁴University of Banja Luka, Faculty of Technology Republic of Srpska, Bosnia and Hercegovina

(Scientific paper)

The paper presents mathematical models which describe the dependence between water sorption capacity, on one hand, and the degree of crystallinity and the content of Na_2O and Al_2O_3 in NaY zeolite, on the other. NaY was synthesized from sodium aluminate solution, water glass and sulfuric acid under different conditions of crystallization. The obtained zeolite powders underwent chemical analysis (Na₂O and Al₂O₃), water sorption capacity (WSC), as well as diffraction analysis which served to determine the degree of crystallinity (CD). Zeolite powder samples had the following values: for the content of Na₂O from 13.81 to 16.14%, for Al_2O_3 from 21.58 to 27.17%, degree of crystallinity from 58.70 to 114.00 and WSC from 21.32 to 36.59%, and regression analysis lead to the conclusion that there is a significant correlation between water sorption capacity and the degree of crystallinity, unlike the contents of Na₂O and Al₂O₃ in the zeolite powder, whose correlation with water sorption capacity was neglibile. The mathematical model obtained by linear regression analysis had a high $R^2 = 0.796$, where as non-linear regressional analysis produced a better mathematical model R^2 = 0.912, where water sorption capacity was expressed through a quadratic model.

Keywords: Regression analysis • Water sorption capacity • Degree of crystallinity