A contribution to the study of hydrophobicity (lipophilicity) of bile acids with an emphasis on oxo derivatives of 5β-cholanoic acid

Mihalj Poša¹, Milena Rašeta¹, Ksenija Kuhajda²
¹Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
²Department of Chemistry, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia

Abstract
Due to their promotory action on the transport of some drugs through various membranes (lipophilic barriers), oxo derivatives of bile acids have recently been increasingly used in biopharmacy. These compounds also exhibit a lower membranolytic (toxic) activity than their hydroxy analogues. Because of that, it is of special importance to find out the descriptors that would adequately describe the structure of bile acids and their biological activity and be used to model the quantitative structure-activity relationship. In view of this, the present work is concerned with the application of the chromatographic parameter R_M^0 obtained by normal-phase thin-layer chromatography in the solvent system toluene-butanol and silica gel as stationary phase to describe the lipophilicity of bile acids. Also, the work introduces a new molecular descriptor (ND) that reflects both 2D and 3D topological characteristics of the molecule. Between the retention constant, R_M^0 and the descriptor ND there is a good correlation, and both R_M^0 and ND describe sufficiently well the structural (conformational) changes that arise in the process of oxidation of the OH group of the steroid skeleton to an oxo group. On the other hand, the in silico descriptors of lipophilicity, log P (atomic-based prediction) and Clog P (fragment-based prediction) predict the hydrophobicity of bile acid oxo derivatives with a certain error.

Keywords: Bile acid oxo derivatives • Hydrophobicity (lipophilicity) • Retention constant – R_M^0

Available online at the Journal website: http://www.ache.org.rs/HI/

Bile acids are amphiphilic compounds with a steroid skeleton in their molecules (surface active substances) [1,2]. Namely, the β side of the steroid nucleus is the more hydrophobic (lipophilic) surface of the molecule, whereas the α side is the less hydrophobic (i.e., hydrophilic) surface [3]. The hydrophobicity, i.e., lipophilicity, of bile acid molecules plays an important role in their interaction with the receptors, enzymes, ionic channels, cell membranes, etc. [4]. Namely, it is known that the hydrophilic–hydrophobic balance (HHB) of bile acids determines their ability to bind to the large conductance Ca$^{2+}$-activated K$^+$ (BKCa) channel, which results in the relaxation of the endothelial smooth muscles [5]. Also, the HHB indicates the promotypic properties of bile acids in the transport of polar drugs through biological membranes [6,7]. It is necessary to point out that this property determines the membrane toxicity of bile acids [8].

Lipophilicity can be expressed in terms of many different descriptors (log P, π_f, f, log k_w, R_M, R_M^0) obtained experimentally or calculated. The most frequently used experimental parameters are retention constants, R_M^0 (RP TLC) and log k_w (RP HPLC) [9,10]. It is accepted that retention constants (R_M^0 and log k_w) of lipophilicity are more precise and reproducible than those determined by traditional “shake-flask” methods [11,12]. Many QSAR (quantitative structure activity relationship) models involve the lipophilicity descriptors (logP or chromatographic parameters). Hence, in order for the obtained QSAR model to have adequate predictivity it is necessary that these descriptors describe with great fidelity structural differences between the molecules encompassed by the given model [13].

The aim of this work was to compare the experimental retention constants (normal-phase thin-layer chromatography, NP TLC) and molecular lipophilicity descriptors, i.e., in silico descriptors of partition coefficients – log P (atom-based prediction) and Clog P (fragment-based prediction) – that are obtained by conventional software packages ChemDraw, Alchemica, etc. [14,15]. In other words, the objective is to check whether the experimental lipophilicity parameters or in silico lipophilicity parameters describe more adequately the structural characteristics of bile acids. Also, the work introduces a new descriptor based on the molecular graph and conformational analysis of the steroid skeleton as a lipophilicity descriptor. In addition to the common hydroxy derivatives, the work is concerned with oxo derivatives of the investigated bile acids (Figure 1). Namely, oxo derivatives, because of their lower
membrane toxicity, have received an increasing application in biopharmaceutical investigations [16–19].

EXPERIMENTAL

Synthesis of oxo derivatives of cholic, deoxycholic and chenodeoxycholic acids

Cholic, deoxycholic and chenodeoxycholic acids (Sigma, New Zealand, 98%) were used as the starting compounds for the synthesis of their oxo derivatives.

3α-Hydroxy-12-oxo-5β-cholanoic acid (12-oxo-lithocholic acid) and 3α,7α-dihydroxy-12-oxo-5β-cholanoic acid (12-oxo-chenodeoxycholic acid) were prepared according to the procedure of Miljković et al. [20], while 3α,12α-dihydroxy-7-oxo-5β-cholanoic acid (7-oxo-deoxycholic acid) and 3α-hydroxy-7-oxo-5β-cholanoic acid (7-oxo-lithocholic acid) were obtained according to Tullar [21]. 3α-Hydroxy-7,12-dioxo-5β-cholanic acid (7,12-dioxo-lithocholic acid) was synthesized by a selective oxidation of the 7α-hydroxy group of 3α,7α-dihydroxy-12-oxo-5β-cholanic acid following the procedure of the same author (Tullar). The starting compound for obtaining 12α-hydroxy-3,7-dioxo-5β-cholanic acid was methyl cholate, selectively oxidized in one-pot reaction according to Kuwada et al. [22]. 3,7,12-Trioxo-5β-cholanoic acid (3,7,12-tri-oxo-cholanic acid or dehydrocholic acid), 3,12-dioxo-5β-cholanoic acid (3,12-dioxo-cholanic acid) and 3,7-dioxo-5β-cholanoic acid (3,7-dioxo-cholanic acid) were obtained according to Fieser and Rajagopalan [23]. The purity of the synthesized compound was higher than 98%. Hyodeoxycholic acid was bought from Sigma, New Zealand, 98%.

Determination of molecular lipophilicity by RPTLC

The retention constant, \(R_M^0 \), was determined by NP TLC with silica gel (Merck) as stationary phase, starting from the following equation:

\[
R_M = \log \left(\frac{1}{R_I - 1} \right)
\]

where \(R_I \) represents the retention factor. The value of \(R_M \) depends linearly on the logarithm of the concentration of the organic modifier (ethanol or butanol) in the mobile phase (toluene) according to the following relation (Figure 2):

\[
R_M = R_M^0 + b \log c
\]

in which \(R_M^0 \) is the intercept [24]. The concentration of organic modifier (ethanol or butanol) in the mobile phase ranged from 5 to 35%.

Data treatment

Pearson’s correlation obtained using the program package of Statistica 8.0. The 3D models (energetically most favorable) of bile acids generated according to the MOPAC protocol (ChemBio3D Ultra 11.0) that are used to obtain the in silico log P and Clog P.

RESULTS AND DISCUSSION

As can be seen from Table 1, for both solvent systems, the oxo derivatives of the investigated bile acids

Figure 1. Structures of tested bile acids.
have experimentally determined values of retention constant, R_{M}^{0}, that are smaller compared to those for cholic, deoxycholic and chenodeoxycholic acids. This can be explained by the fact that the substitution of the α-oriented OH group with oxo groups shifts the position of the oxygen atom towards the mean plane of the steroid system (Figure 3A). When the OH group has either an α-axial (a) or α-equatorial (e) orientation, the steric position of the oxygen atom in the corresponding Newman formula after the oxidation of the OH to oxo group is shifted by 60° toward the angular methyl groups [8,16]. This change in the position of the oxygen atom leads to the stabilization of water molecules by hydrogen bonds (SWM) in the solvation sheath of the bile acid molecule (oxo derivative), both from the α and partially from the β side of the steroid skeleton. Thus, the amount of nonstabilized water molecules (NSWM) in the solvation sheath of the investigated bile acid molecule is decreased [25,26]. This means that oxo derivatives of the investigated bile acids are more stabilized in water than cholic, deoxycholic and chenodeoxycholic acids. Hence, their oxo derivatives have also a lower tendency to pass to the organic phase, i.e., 1-octanol (Figure 3B), and, consequently, they have lower log P values compared to those of cholic, deoxycholic and chenodeoxycholic acids. In other words, their hydrophobicity (lipophilicity) is lowered. An analogous explanation concerning the log P is also the process of binding to the polar stationary phase in NP TLC. Namely, the more hydrophobic the bile acid, the stronger

$$y = -0.4295x + 0.7022$$

$$R^2 = 0.9946$$

\[
\begin{array}{cccc}
\text{log c} & 5 & 10 & 15 \\
\text{Rf} & 0.27 & 0.34 & 0.37 \\
\end{array}
\]

Figure 2. Relationship between R_{M} and concentration (log c) of modifier, ethanol (example of the 7-oxo-deoxycholic acid, 9).

Table 1. Parameters of lipophilicity (hydrophobicity) of bile acids

<table>
<thead>
<tr>
<th>Bile acid</th>
<th>Calculated</th>
<th>Experimental $R_{M}^{0}\pm$sd (n = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Log P</td>
<td>Clog P</td>
</tr>
<tr>
<td>Deoxycholic acid (1)</td>
<td>4.20</td>
<td>4.51</td>
</tr>
<tr>
<td>Cheno-deoxycholic acid (2)</td>
<td>4.13</td>
<td>4.51</td>
</tr>
<tr>
<td>Cholic acid (3)</td>
<td>3.04</td>
<td>2.43</td>
</tr>
<tr>
<td>12-Oxo-lithocholic acid (4)</td>
<td>4.69</td>
<td>4.11</td>
</tr>
<tr>
<td>3,12-Dioxo-cholanic acid (5)</td>
<td>4.84</td>
<td>3.71</td>
</tr>
<tr>
<td>7-Oxo-lithocholic acid (6)</td>
<td>4.45</td>
<td>4.11</td>
</tr>
<tr>
<td>3,7-Dioxo-cholanic acid (7)</td>
<td>4.61</td>
<td>4.07</td>
</tr>
<tr>
<td>12-Oxo-cheno-deoxycholic acid (8)</td>
<td>3.53</td>
<td>2.03</td>
</tr>
<tr>
<td>7-Oxo-deoxycholic acid (9)</td>
<td>3.36</td>
<td>2.03</td>
</tr>
<tr>
<td>7,12-Dioxo-lithocholic acid (10)</td>
<td>3.85</td>
<td>2.36</td>
</tr>
<tr>
<td>12α-Hydroxy-3,7-dioxo-cholanic acid (11)</td>
<td>3.52</td>
<td>1.99</td>
</tr>
<tr>
<td>3,7,12-Trioxo-cholanic acid (12)</td>
<td>4.01</td>
<td>2.33</td>
</tr>
<tr>
<td>Hyodeoxycholic acid (13)</td>
<td>4.13</td>
<td>4.51</td>
</tr>
</tbody>
</table>

117
it binds to the polar stationary phase (polar groups of the stationary phase stand for the SWM), that is it remains a shorter time in the mobile phase, which gives a higher \(R_M \) value (shorter \(R_f \) value) and a higher intercept (\(R_M^0 \)).

In view of the above discussion concerning the importance of the steric orientation of the oxygen atom (either in the OH or oxo groups bound to the steroid skeleton) in the determination of the lipophilicity of bile acids a new descriptor (\(ND \)) is introduced here which takes also into account the conformational characteristics as well as the distances in the corresponding molecular graph, i.e., it possesses both 2D and 3D topological characteristics \([14,15]\). This descriptor is calculated by the following formula:

\[
ND = \frac{1}{n} \sum \frac{\angle_{\text{O,ax}}}{d_{\text{O,O}} + d_{\text{O,ph}}}
\]

(3)

where \(n \) is the number of C atoms in the steroid skeleton with the OH or oxo groups bonded to it; \(\angle_{\text{O,ax}} \) represents the angle between the \(\beta \)-axial (\(\alpha \)) angular methyl group and OH or oxo group in the corresponding Newman projection formula (\(\angle_{\text{O,ax}}; \alpha(\text{axial}) \) OH = 180°; \(\alpha(\text{equatorial}) \) OH or oxo = 120°; \(\beta(\text{equatorial}) \) OH or oxo = 60°); \(d_{\text{O,O}} \) represents the mutual distance between the C atom to which the OH or oxo groups of the steroid skeleton (in the units of single bonds) are bonded, whereas \(d_{\text{O,ph}} \) is the distance between the C atom with OH or oxo groups from the steroid skeleton and polar head from the side chain (in the units of single bonds, the shortest path in the graph of the bile acid molecule). As can be seen from Table 1, the values of \(ND \) in the congenic groups of bile acid with two and three oxygen atoms in the steroid skeleton decrease when the OH group is replaced with an oxo group. Between the retention constants, \(R_M^0 \), and the descriptor \(ND \) there exists a good correlation (Pearson’s correlation, Table 2). This indicates that the chromatographic quantity (\(R_M^0 \)) for both solvent systems describes appropriately structural properties of bile acids. This is also evident from Figure 4A, where bile acids are represented in the plane: \(R_M^0 : \text{toluene–ethanol} \) and \(R_M^0 : \text{toluene–butanol} \). Namely, the investigated bile acids are grouped in the plane \(R_M^0 \) in accordance with their structural characteristics: dihydroxy (1,2) bile acids; bile acids with one OH group and one oxo group (7,5) as well as chioleoxocholic acid (13) which, although being a dihydroxy derivative, its C6 OH group is of the equatorial orientation, i.e., it makes an angle of 60° with the

Figure 3. A) Change in the orientation of the oxygen atom with respect of mean plane of the steroid skeleton in the oxidation of the OH group to oxo group (Nevman’s projection). B) Effect of the substitution of the OH group with oxo group on the distribution of bile acids between the organic and aqueous phases (SWM hydrogen-bond stabilized water molecules; NSWM water molecules not stabilized by hydrogen bonds; C: cholic acid; TOC: 3,7,12-trioxocholanoic acid).
mean plane of the steroid skeleton (Newman’s projection), as well as the oxygens of the oxo groups (7,5); bile acids with two oxo groups (7,5) and cholic acid (3); bile acids with two OH groups and one oxo group (8,9); bile acids with two oxo groups and one OH group (10,11), and bile acid with three oxo groups (12). If the grouping of bile acids is considered based on their in silico log P (atomic-based prediction) and Clog P (fragment-based prediction) values (Table 1 and Figure 4B), it can be noticed that there is no continuous change like that shown in Figure 4A, but characteristic congeneric groups are formed (group I: bile acids with two oxygen atoms and group II: bile acids with three oxygen atoms). Within the congeneric group II, cholic acid (3) and dioxo (10) and trioxo (12) derivatives have identical Clog P values, whereas the log P value is larger for dioxo and trioxo derivatives than for cholic acid; similar anomalies being also observed in the congeneric group I. Between the in silico log P and ND descriptors, that is between the retention constants, R_m, there does not exist a significant correlation (Table 2), whereas between the in silico Clog P and ND, that is R_m, there exists a weak correlation (Table 2).

The reason why the in silico log P (atomic-based prediction) and Clog P (fragment-based prediction) descriptors do not adequately describe the lipophilicity of

<table>
<thead>
<tr>
<th>Table 2. Pearson’s correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>logP</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>logP</td>
</tr>
<tr>
<td>ClogP</td>
</tr>
<tr>
<td>ND</td>
</tr>
<tr>
<td>R_m° tolueene/ethanol</td>
</tr>
<tr>
<td>R_m° tolueene/butanol</td>
</tr>
</tbody>
</table>

*Correlation is significant at the 0.01 level (2-tailed)
bile acid oxo derivatives lies in the fact that these lipophilicity quantities are obtained based on the calibration molecules, which are fragmented, and applying the least squares fitting procedure with the extrapolation to the sought structure. However, if the calibration set does not contain a molecule with similar conformation (steric environment) as the sought molecule, then the predicted value may deviate from the real value [11,13].

CONCLUSIONS

The NP TLC retention constants, \(R_m^0 \), determined for both solvent systems (toluene-ethanol and toluene-butanol), describe adequately the lipophilicity of hydroxy and oxo derivatives of bile acids. Good correlation between \(R_m^0 \) and ND descriptor, which has both 2D and 3D topological characteristics, indicates that the parameter \(R_m^0 \) reflects the steric changes arising in the oxidation of the OH group of the steroid skeleton to oxo group. Hence, \(R_m^0 \) may be effectively used in the QSAR investigations of bile acids.

Acknowledgement

Authors acknowledge financial support of the Ministry of Science and Technological Development of the Republic of Serbia (Project No. 172021) and the Secretariat of Science and Technological Development, AP Vojvodina, Republic of Serbia (Grant no. 114-451-2113/2011).

REFERENCES

IZVOD

PRILOG ISPITIVANJU HIDROFOBNOSTI (LIPOFILNOSTI) ŽUČNIH KISELINA, SA OSVRTOM NA OKSO DERIVATE Sβ-HOLANSKE KISELINE

Mihalj Poša1, Milena Rašeta2, Ksenija Kuhajda2

1Departman za farmaciju, Medicinski fakultet, Univerzitet u Novom Sadu, Novi Sad, Srbija
2Departman za hemiju, Prirodno-matematički fakultet, Univerzitet u Novom Sadu, Novi Sad, Srbija

(Naučni rad)

Okso derivati žučnih kiselina u poslednjih 15 godina imaju sve veću primenu u biofarmaciji. Naime, nađeno je da imaju promotorna delovanja na transport određenih lekova kroz različite membrane (lipofilne barijere). Takođe, okso derivati žučnih kiselina imaju i manju membranolitičku (toksičnu) aktivnost nego njihovi hidrokksi analozi. Stoga je bitno naštaženje deskriptora koji adekvatno opisuju strukturu žučnih kiselina te se mogu koristiti u nalaženju kvantitativne zavisnosti izmedu strukture i biološke aktivnosti tj. u QSAR modelovanju. Stoga se u ovom radu ispituje primena retencione konstante RM0, dobijenog pomoću tankoslojne hromatografije na normalnim fazama (NP TLC) u sistemima rastvarača toluen-etanol i toluen–butanol (silikagel stacionarna faza), u opisivanju lipofilnosti žučnih kiselina. Takođe, u radu je uveden (konstruisan) i nov molekulski deskriptor (ND) koji ima 2D i 3D topološke karakteristike molekula. Između retencione konstante R_{M0} i deskriptora ND postoji dobra korelacija, kako RM0 tako i ND adekvatno opisuju strukturne konformacione promene koji se javljaju pri oksidaciji OH grupe steroidnog skeleta u okso grupu. Dok in silico deskriptori lipofilnosti, log P (atomic based prediction) i Clog P (fragment based prediction) kod okso derivata žučnih kiselina hidrofobnost predviđaju sa određenom greškom.

Ključne reči: Okso derivati žučnih kiselina • Hidrofobnost (lipofilnost) • R_{M0} – Retenciona konstanta