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TRANSFORMATION OF THE PROBLEM OF
MULTIVARIABLE SYSTEM OF DIFERENTIAL
EQUATIONS INTO THE PROBLEM OF
ALGEBRAIC EQUATIONS WHICH RELATE
THE OPEN AND CLOSED LOOP MATRICES
AND DESIGN OF THE NEW ALGEBRAIC
MIMO CONTROLLER USING THE ALGEBRAIC
EQUATIONS

In this paper we are proposing the algebraization of original MIMO closed lo-
op transfer functions by derivation of algebraic matrix equations which can
be used for algebraic multivariable controller design instead the original
equations. First, using closed loop transfer function with P-controller we
derive two algebraic matrix equations. The open loop transfer function is:
G(s) = (Ts + I)™ K, and closed loop is: Ger(s) = (Ters + I) Koy Those
two equations are connected with two algebraic matrix equations: the first
one is static equation K¢y, = (I + KR)™ KR which represents Closed Loop
Static Matrix Kcr, as a function of Open Loop Static Matrix K and Controller
matrix R. The second equation is Tcy, = (I + KR)™ T, represents the Closed
Loop Dynamic Matrix as a function of Open Loop Static Matrix K, Open
Loop Dynamic matrix T and Controller Matrix R. Those two algebraic for-
mulas contain all the parameters of original differential equations and we
can use them instead the differential equations to design the multivariable
controller. Second, having two matrix formulas instead of one system of diffe-
rential equations solves some problems (we don’t have to solve differential
equations) but creates some new problems. Those algebraic equations show
functional relations between matrices only, there are no vectors, and matrices
are variables and parameters. We can do only algebra of those equations; we
don’t know the general theory of those equations. One simple way to relate
those equations with control is to define RGA for each matrix. Then those
equations are showing how the RGAs of open—loop static, dynamic and con-
troller are affecting the closed—loop static and dynamic RGA. Third, using
the dynamic matrix formula we can algebraically calculate the controller gain
which will make V matrix to have dynamic closed loop RGA(T¢r) = 1. The
controller algebraic formula is simple R = K (T - I). This formula gives the
proper structure for the controller, and it can be improved by multiplying the
first formula by the scalar (r) R = r*K' (T — I). The results are very good for
2x2 and 4x4 systems and they suggest that the algebraic design for any nxn
system will work successfully as well.

The characteristics of the multivariable linear
systems are defined with the system of linear diffe-
rential equations with constants coefficients. The La-
place transform converts differential equations into
much simpler algebraic equations in the transform
variable (s), simplifying the modeling and design.

But for the multivariable systems the Laplace
transforms alone is not good enough. Those systems
have new level of complexity and the new problem is
that instead of scalar parameters in single-variable
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systems we have matrix parameters in multivariable
systems.

Because of the matrix parameter problem we
derived two algebraic matrix equations that connect
the closed-loop matrices with open-loop matrices
and controller and so transform the closed-loop La-
place transform MIMO problem to algebraic pro-
blem which is much simpler to use for design.

This new derivation is by its results similar to
some kind of Second Multivariable Laplace Tran-
sform because it transforms the original given in La-
place transform matrices [functions of (s)] into Alge-
braic Matrix Equations, without any functions of (s).

Those equations express the static and dynamic
matrices of closed-loop as a function of open-loop
static and dynamic and controller matrix.
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In the typical case we have five types of matrix
parameters: open-loop static, open—loop dynamic,
closed-loop static, closed-loop dynamic and control-
ler matrix. The typical controller design will be: given
the open-loop matrices and closed-loop output spe-
cifications, find the controller matrix that will make
closed-loop matrices to have such values that the
output specification will be as required. The design of
such controller is not a simple problem.

The main concepts to relate the matrices with
control problem are algebra, RGA and eigenvalues.
Using algebra (Eq. (10)) we can calculate the P con-
troller directly from the two equations. RGA is more
appropriate for the static matrices but can be used
for dynamic matrices also. Eigen-values are more ap-
propriate for the dynamic matrices but they can be
used for static matrices too. Both concepts are appro-
priate for internal matrix interactions for one matrix.
In this paper we will use only algebra for design.

Both matrix equations show how the external
interaction between different open-loop matrices
affect the closed loop matrices. Combination of inter-
nal and external interaction results in closed loop
matrices. The external interaction can be taken into
account using Matlab.

Using only those two algebraic matrix equations
with RGA dynamic specification we were able to al-
gebraically design the multivariable proportional
controller with good static and dynamic characte-
ristics.

SINGLE VARIABLE SYSTEM DECOMPOSITION

Open-Loop Transfer Function Decomposition to
Static and Dynamics Part

The single variable representation of first-order
linear differential equations given in the form of
transfer function is:

G(s) = (B +)'K (1)

The advantage of this transfer function type
model is that the two numbers K and T have clearly
defined physical meaning, K is gain (static parame-
ter) and T is time constant (dynamic parameter).

This transfer function can be decomposed into
static part, open loop gain = K and open-loop dyna-
mic part = ('Is + I). The static part is simple number,
but the dynamic part is function of complex variable
s. We will analyze the details of dynamic part latter,
but now let’s just say that all the dynamic parameters
of the system are given in the dynamic parameter
which is time constant T. For this reason we will focus
our attention to this parameter.

Closed Loop Transfer Function Model

The general solution of one closed-loop linear
differential equations in the form of transfer function
is:
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Figure 1. How the process (K = T = 1) unit response y(t)
change with controller gain R, (R = 1 slower and R = 10 fas-
ter). This is the graph of the solution of differential equation
unit step response.

Ger(s) = (Ters + 1)Ko )

where Ter, and Kcp are time constant and gain of clo-
sed loop.

We can see that the functional shape of the
open-loop and closed-loop solution is the same, but
the static and dynamic parameters are now different.

We will use this open loop—closed loop simila-
rity to try to derive some understanding of the clo-
sed-loop solution, based on the understanding of the
open-loop solution in the case of classical control ap-
proach.

In the Figure 1, we can see the effect of the in-
crease of controller gain on the closed loop step res-
ponse. The bigger the controller gain, the response is
faster and closer to the unit value.

Two Closed-Loop Algebraic Equations and
Algebraic Design

The closed loop transfer function matrices are
connected with open loop transfer function matrices
with two nonlinear Algebraic functions:

Ker = (I + KR) KR 3)
Ter = (I + KR)'T 4)

Here we have a system of two nonlinear para-
metric equations that connect open-loop, controller
and closed-loop characteristics.

The most important effect is to see how the
change of proportional controller parameter R will
change closed-loop static matrix K¢r, (Eq. (3)) and
closed loop dynamic matrix Tcr. (Eq. (4)).

From Figure 2 we can see that with bigger con-
troller gain R the closed loop static gain limit is con-
verging to 1 and dynamic gain limit is converging to
0. This simple means that static gain value converges
toward the wanted setup and dynamic of closed loop
is getting faster.
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Graph of Kcl and Tcl as a Function of
Controller Gain R
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Figure 2. The graph is representing how Kcl = f(R) and T¢l =
g(R). R is the adjustable parameter that is affecting static and
dynamic of closed loop.

We claim now that Eqs. (3) and (4) presented in
the Figure 2, contain all the information needed to
design the closed loop controller R that we have in
the Figure 1.

In other worlds we do not need to solve diffe-
rential equation to know that bigger controller gain
R will produce better response. Bigger R will make
static closer to 1 and dynamic faster, closer to zero.

MULTIVARIABLE DECOMPOSITION AND
ALGEBRAIC DESIGN

The Linear Feedback Design of MIMO control-
ler is mathematically much more complicated than
SISO system.

To solve the above multivariable problem in the
simplest possible way we propose the following Di-
rect Matrix Analysis Approach analog to the previous
single variable problem. The obtained two algebraic
matrix equations can be handled for control purposes
using relative gain array analysis (RGA): The method
is proposed by Bristol [1] and it is intensively used be-
cause it is mathematically simple and very efficient in
practice: Skogestad [2], McAvoy [3], Luyben [4] and
Stephanopoulos [5]. The method is improving and
extending in the work of: Arranz [6], Vaes [7], Ka-
irwala [8], Asmar [9,10], but we did not find any met-
hod that is similar to our method in this paper.

Transfer Function Decomposition of Open—Loop
Static and Dynamics

The general multivariable solution of system of
linear differential equations (open-loop) in the form
of multivariable transfer function is:

G(s) = (Ts + )'K 5)

where T and K are (nxn) matrices. The advantage of
this transfer matrix type model is that the two matri-

ces K and T have clearly defined physical meaning,
static matrix and dynamic matrix.

This transfer function can be decomposed into
static part, open loop gain matrix = K and open-loop
dynamic part = (Ts + I). The static part is simple
matrix, but the dynamic part is more complicated.

We can say that T is dynamic matrix and K is
static matrix. The solutions of characteristic equation
of dynamic matrix T are the time constants of the
system.

Closed Loop Decomposition

The general multivariable solution of system of
linear differential equations (closed-loop) in the
form of MV transfer function is:

Gei(s) = (Tars + D7'Key, (6)

where Tcr, and K¢y are (nxn) matrices.

We can see that the functional shape of the
open-loop and closed-loop solution is the same, but
the static matrices are different. We will use this
open—closed similarity to try to derive some under-
standing of the closed—loop solution, based on the
understanding of the open-loop solution just in the
case of single-variable approach.

Focus on Two Algebraic Matrix Functions

The general multivariable solution of system of
linear differential equations with multivariable pro-
portional controller (R), depends completely on two
nonlinear matrix functions, which are the same as
Eqgs. (3) and (4), but instead of scalars we have
matrices.

Kcr, = (I + KR)'KR (7)
Ter, = (I+ KR)™'T )

First static equation represents the interaction
between the open-loop static and the controller and
the second the interaction between the open-loop
static, open—loop dynamic and controller. The first
equation is basically showing that if you have the con-
troller with big enough gain the static closed-loop ga-
in will be close to the unit matrix. The second is
showing static and dynamic interaction so we will use
this equation to make both static and dynamic of clo-
sed loop equal to minimum.

Having two matrix formulas instead of one
system of differential equations solves some pro-
blems (Diff. Eq.) but creates some new problems.
The new problem is that those equations show functi-
onal relations only between matrices, here matrices
are variables and parameters. We can do only algebra
of those equations; we don’t know the general theory
of those equations.

One concept that can help us with this new type
of equations is the relative gain array, RGA (Skoges-
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tad [2] Luyben [4], Stephanopoulos [5] and McAvoy
[3]), and the other one is eigenvalues. The first one is
more important for the static equation and the se-
cond one for the dynamic equation. But to keep the
paper simple let’s use only the RGA for both
equations.

If the Static Open-Loop Relative Gain is close
to 1 our two multivariable static curve will be close to
one static single-variable curve from Figure 2.

If the Open-Loop Dynamic RGA is close to 1
then our two multivariable dynamic curve will be close
to two dynamic single—variable curve from Figure 2.

All the parameters of the system and controller
are here and we will try to analyze and design the clo-
sed-loop system using only these equations, without
reference to the transfer matrices.

ALGEBRAIC MIMO CONTROLLER DESIGN

Let’s use the algebraic formulas for controller
design. We have two equations; the first has two pa-
rameter interactions: the interaction of process
open-loop static and controller gain.

The second equation shows three parameters
interaction: open—loop static, dynamic and controller.
Here we have all the relevant parameters.

To produce the best controller we could use
both equations, to simplify the design, let’s try the se-
cond one because it takes into account both static
and dynamics.

Algebraic Controller Design of the Best Closed Loop
Dynamic Matrix

Using the static matrix model we can see from
static Eq. (7) that if we have the controller with para-
meters big enough, the closed loop RGA will be close
to the 1.

From: in{1)

The dynamic equation is more complicated, and
probably more important because of the stability. If
we use the dynamic formula (8) for the controller
matrix, the best controller for the system that will
produce dynamic DRGA (V) = 1 will be:

R=KXT-I) )

This controller has the best structure of matrix
R, but we can improve the controller by adding multi-
plication with the scalar constant r is given to be able
to increase the parameters of the controller. So here
we have the best controller for the dynamic part of
the system.

R =r*K}(T-1) (10)

The two aspects (static, dynamic) of closed loop
transfer functions are not of the same importance for
each case. Fach controlled unit and maybe each set
of parameters have his particular priority, which has
to be judged for the particular case.

Calculations of Algebraic Controller Design for
some simple examples. Both static and dynamic
open loop symmetric and their RGA are close to 1.

Some examples of calculation and graphs are gi-
ven in the following pages. A simple Matlab program
[11-13] was written for 2x2, and 4x4 systems. The
more complicated cases should be solved using both
matrix equations.

Case 1, The matrix data are:

33 63

and the matrices are diagonally dominant. This static
and dynamic RGA are 1.2, and the controller para-
meterisr = 10.

K

Step Response

From. In(2)

Figure 3. Open Loop MIMO, Case 1, dynamic DRGA = 1.2 close to 1, so dynamic is not difficult. Rise time is about 30 s.
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Step Response

Fromm: in{1}

From: in{2}
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Figure 4. Closed Loop MIMO, algebraic controller design scalar parameter r = 10. Very good closed loop response with minimal sta-
tic and dynamic interaction, with small r because DRGA and SRGA are close to 1. Rise time is about 0.5 s, much smaller than open
loop.

Case 2, The matrix data are: good but we had to use big value for the scalar para-

meter r.
K:(S Zj T:( 5 375} Case 3. The similar results we get with 3x3
25 375 5 system and 4x4 is represented in the next graph.

This case has much bigger dynamic RGA = The open loop data for matrices are:

3.75, the dynamic is more difficult and because of this

the controller parameter has to be bigger, so r = 80. i ; } } g g ; ;
We can see that the Eq. (10) has resulted in go- K= 1151 r= 3353
od and very fast closed loop response. In the first ca- 1115 3335

se the dynamic DRGA was 1.2 and the dynamic was
not difficult, but in the second case the dynamic

The values of static and dynamic open loop
DRGA was about 3.75 and the closed loop result is

RGAs are:

Step Response

Fromn in{1)

From. in{2)

Figure 5. Open Loop MIMO Case 2, difficult dynamic RGA = 3.75. Rise time is about 40 s.
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Figure 6. Closed Loop, Controller designed using Algebraic method, controller scalar parameter r = 80. For difficult open loop dyna-
mic with DRGA> >1 the parameter r has to be very big to get the good closed loop response. Rise time is about 0.4 s, much smaller
than open loop.

Fram: In{1} Fram: Ini4}

Time (sec)

Figure 7. Open loop graphs of 4x4 system. Rise time is about 40 s.

1.09 —0.03 -0.03 —-0.03 1000
-0.03 1.09 -0.03 —-0.03 0100
RGAKY=| 003 003 109 -0.03 RGAID =15 o 1 ¢
~0.03 -0.03 -003 1.09 0001

196 -0.032 -0.032 -0.03 1.05 -0.018 —-0.018 —0.018

0032 196 -0.032 —0.032 0018 1.05 -0.018 —0.018

RGA(D = —0.032 -0.032 196 —-0.032 RGAV) = -0.018 -0.018 1.05 -0.018

~0.032 -0.032 -0.032 196 —0.018 -0.018 -0.018 1.05

So the RGA(K) is unit matrix and RGA(T) is
approximately diagonal.

And the values of closed loop RGAs are:

The result for this case is very good, but the
open-loop static and dynamic RGAs are not difficult,
they are close to the value of 1.
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Figure 8. Closed loop graphs. Rise time is reduced to 0.5 s and both static RGA(H) and dynamic RGA(V) are practically equal to 1.

For the more difficult values of RGAs we sho-
uld probably use both algebraic formulas and make
some trade—off between static and dynamic closed lo-
op RGAs.

CONCLUSIONS

A new algebraic multivariable controller design
is proposed to solve the control of multivariable
systems.

First, two algebraic matrix equations are deri-
ved that connect static and dynamic parts of open
and closed control loops.

Second, the problem with these equations is
that they are not simple linear algebra systems; they
are functional relations between matrices only. The
only way to understand these equations for the pur-
pose of process control is to use RGA of matrices. In
the equations we have four types of matrices so we
have four types of RGAs: open-loop static, (OLS-
RGA(K)) open-loop dynamic (OLD-RGA(T)), clo-
sed-loop static (CLS-RGA(Kcr)) and closed-loop
dynamic (CLD-RGA(T)).

Third, using the dynamic matrix formula we can
easy calculate the controller gain which will make Ter,
matrix to have dynamic closed loop RGA(T¢r) = 1.
The controller algebraic formula is simple R = K™(T - T).
This formula gives the proper structure for the con-
troller, and it can be improved by multiplying the first
formula by the scalar (r) R = r*K™(T - I).

The second formula was used with excellent su-
ccess for 2x2, 3x3 and 4x4 systems.

The results are very good and they suggest that
the general case for the 2x2 and 4x4 systems. Using
the dynamic matrix equation produced closed loop
results which have the RGA of both static and dyna-
mic practically equal to 1.

APPLICATIONS

1. Apply the new algebraic multivariable con-
troller design to derive controllers for various MIMO
systems with SRGA and DRGA close to 1.

2. Derive the general procedure for more com-
plicated cases where static and dynamic open-loop
RGAs have all possible values from big negative to
values between —1 and +1 and to the big positive
values.

3. Apply algebraic design for plantwide control:
Apply traditional techniques such as RGA, eigenva-
lues and singular value analysis and MPC to the two
matrix equations for plantwide control analysis and
control.
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TRANSFORMISANJE PROBLEMA MULTIVARIJALNOG SISTEMA DIFERENCIJALNIH
JEDNACINA ZA POTREBE UPRAVLJANJA U PROBLEM ALGEBARSKIH JEDNACINA
KOJE POVEZUJU MATRICE OTVORENOG I ZATVORENOG KOLA I PROJEKTOVANJE
NOVOG MIMO REGULATORA KORISTECI ALGEBARSKE JEDNACINE

(Naucni rad)

Aleksandar Cingara
PharmEng Technology Inc., Toronto, Ontario

Prikazan je metod upros€avanja sistema linearnih diferencijalnih jednaci-
na izvodenjem dve matricne algebarske jednacine koje povezuju staticke i
dinamicke matrice otvorenog i zatvorenog kola. Ove dve algebarske jed-
nacine sadrZe sve parametre potrebne za projektovanje proporcionalnog
regulatora za multivarijabilni sistem. Projektovanje regulatora pomocu
dve algebarske jednacine je daleko jednostavnije nego projektovanje re-
gulatora Kkoristedi sistem linearnih diferencijalnih jednacina. Jednostavan
multivarijabilni Matlab program moZze da projektuje multivarijabilni pro-
porcionalni regulator bilo koga reda. Metoda je veoma jednostavna tako
da se verovatno moze Koristiti i za projektovanje postrojenja ili ¢itavih fa-
brika, koje zahtevaju matrice sa velikim brojem kolona i vrsta.
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