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GROUP CONTRIBUTION METHODS
FOR ESTIMATING THE PROPERTIES
OF POLYMER SYSTEMS

Polymer materials are howadays used in a wide range of technological appli-
cations. Reliable knowledge of the thermophysical properties of pure polymers
and their mixtures in the whole composition and a wide temperature and pres-
sure range determines whether a given polymer is suitable for a specific appli-
cation. On the other hand, accurate knowledge of the thermodynamic
properties of the systems is a vital prerequisite for computer-aided syntheses,
design, and the optimization of industrial polymer processes. However, the
experimental data on polymer solubility are often scarce, and at this point, ther-
modynamics provide a powerful tool for modeling and extrapolating the experi-
mental data. These models, together with factual data banks, are powerful
software tools for the reliable development of chemical processes and other
applications of industrial interest. The status of the different approaches and
important applications of industrial interest using thermodynamic information
derived from data banks or by using predictive thermodynamic models are

The continuous development of modern process
industries has made it increasingly important to have in-
formation about the properties of materials, including
many new chemical substances whose physical proper-
ties have never been measured experimentally. This is
especially true of polymeric substances. The design of
manufacturing and processing equipment requires con-
siderable knowledge of the processed materials and re-
lated compounds. This knowledge is also essential for
their application and final use.

Some handbooks and similar compilations [1-6]
contain a part of the data required, but in many cases
the property needed cannot be obtained from such
sources.

The aim of this paper is to give a review of met-
hods based on structure—properties relationships for the
estimation and/or prediction of more important properti-
es of polymers in the solid, liquid and dissolved states,
in cases where experimental values are not found. In ot-
her words, this paper addresses predictions. These are
usually based on correlations of the properties of known
polymers with their chemical structure, with interpolation
or extrapolation, as required.

A so called semi—empirical approach (partly empi-
rical, but based on theoretical models or concepts) is
the most common and sometimes even the only possi-
ble way in a relatively new field of macromolecular mat-
ter. Fundamental theory is generally too remote from the
phenomena which have to be described. What is ne-
eded in practice is a formulation which is designed to
deal directly with the phenomena and which makes use
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of the language of observation. This is a pragmatic ap-
proach that is designed for specific use; it is a comple-
tely non-speculative procedure.

Reid, Prausnitz and Sherwood [7] have performed
this task in the low—molecular field, as far as gases and
liquids are concerned. For molecular crystals and glas-
ses Bondi [8] gave a similar contribution which partly co-
vers the polymeric field, too. Literature on the
macromolecular field is already extremely large. Never-
theless, the researcher is often confronted with the pro-
blem that neither directly measured properties, nor
reliable methods to calculate them, can be found. This is
the justification of the present paper.

The simplest and yet very successful method is
based on the concept of additive group contributions
and the purpose of this paper is to show that group con-
tribution models may be used for estimating properties
of pure polymers, polymer-solvent and polymer—poly-
mer mixtures.

The underlying idea is that there are thousands of
chemical compounds of interest in science and practice;
however, the number of structural and functional groups
which constitute all these compounds is much smaller.
The assumption that a physical property of a compound,
e.g. a polymer, is in some way determined by a sum of
contributions made by the structural and functional gro-
ups in the molecule or in the repeating unit of the
polymer, forms the basis of a method for estimating and
correlating the properties of a very large number of com-
pounds or polymers, in terms of a much smaller number
of parameters which characterize the contributions of in-
dividual groups. These group contributions are often
called increments.

Such a group contribution or increment method is
necessarily an approximation, since the contribution of a
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given group in one surroundings is not necessarily the
same as that in another environment.

The fundamental assumption of the group contri-
bution technique is additivity. If the group values are
known for a specific property F, then the total value of
the property for the whole molecule is often expressed
by a general additive rule of the form:

F=2nF M

or similar additive equations. In Equation (1) nj is the
number of groups of type i and F; is the corresponding
group value. It is obvious that the general group contri-
bution equation has a more complicated form than that
indicated by Equation (1).

This assumption, however, is valid only when the
influence of any one group in a molecule or in a structu-
ral unit of a polymer is not affected by the nature of the
other groups. If there is mutual interaction, it is someti-
mes possible to find general rules for corrections to be
made in such a case of interaction (e.g. conjugation of
double bonds or aromatic rings). Every correction or dis-
tinction in the contribution of a group, however, means
an increase in the number of parameters. As more and
more distinctions are made, finely the ultimate group will
be recovered, namely the molecule or the structural unit
of the polymer itself. Then the advantage of the group
contribution method is completely lost.

So the number of distinct groups must remain re-
asonably small, but not so small as to neglect significant
effects of molecular structure on physical properties. For
practical utility always a compromise must be attained; it
is this compromise that determines the potential accu-
racy of the method.

It is obvious that reliable experimental data are
always to be preferred to values obtained by an estimati-
on method. In this respect all the methods proposed in
this paper have a restricted value.

GROUP CONTRIBUTION METHODS FOR
ESTIMATING PROPERTIES OF PURE POLYMERS

This section will deal mainly with the group contri-
bution (GC) methods for estimating more important pro-
perties of polymers, required later for estimating phase
equilibrium for polymer solutions and blends. It is not
the purpose of this chapter to give a complete review of
group contribution methods for estimating the properties
of polymers. For this, the reader is referred to references
9-11. Examples of properties for which GC methods ha-
ve been developed and presented here are the density,
the solubility parameter, the melting and glass transition
temperatures.

Methods for estimating the densities of polymers

Experimental density data are now available for
many polymers [12,13]. However, the number of
polymers of interest is much greater than the number of
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those for which data are available. The density of some
polymers can be estimated using one of the GC met-
hods discussed below.

The van Krevelen method

Van Krevelen [9] suggested the following equati-
ons for estimating the volume of polymers using group
contributions, which are based on their physical state
(amorphous, glassy, crystalline):

— for amorphous polymers:

Va (1) = Vi (1.30 +107°T) (a)
— for glassy polymers:

Vg (T) = Vi (1.30 + 05510 Ty + 0.45107° T) (2b)
— for completely crystalline polymers:

Ve (T) = Vi (1.30 + 0.45107° T) @c)

In the above equations, T is the temperature in K,
Tq is the glass transition temperature in K, and V,, is the
van der Waals volume of the repeating unit.

Parameter tables and detailed explanation of cal-
culation are presented in reference 9.

The van der Waals volume, originally introduced
by Bondi [8], is defined as the actual volume of a mole-
cule and can be easily estimated using GCs via Equati-
on (1), where F = V,, and the parameter tables are
available in many references [7,14,15]. In these tables,
which have been developed for the UNIFAC activity coe-
fficients model, the van der Waals volume is given in
terms of a dimensionless parameter Ry. Group van der
Waals volumes (in cms/gmol) can be estimated from Ry
values as follows:

Viwk = Rk - 15.17 Vyk 3)

The Askadskii method

The calculation of the volume of polymers propo-
sed by Askadskii [10,16] is based on the chemical stru-
cture of the repeating unit via group contributions and
on their physical state (amorphous, glassy, crystalline):

V

V==~ (4a)
where V,, is the van der Waals volume of the repeating
unit of the polymer and k is the coefficient of packing.

Regardless of the chemical structure of a polymer,
the coefficient of packing of an amorphous polymer has
been shown to be approximately the same, and equal
~ 0.681 at 293.15K. Hence, the Equation (4a) for amor-
phous polymers has been rewritten as:

Vw

Va=i

(4b)
where kg, = 0.681.

Crystalline polymers were found to have a rather
broad curve of distribution of the coefficient of packing.
Investigations by Askadskii [10,16] show that the tempe-
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rature dependences of the coefficient of packing for
polymers have a form of:

Vw

MVg [1 +ag (T-Ty)]

k(T) = T<Ty (4c)
where Vg is the specific volume at glass transition tem-
perature, Tg, ag is the coefficient of thermal expansion
of the polymer before glass transition temperature, and
M is the molar mass of polymer repeating unit. A no-
teworthy property of this temperature dependence is
that the coefficient of packing in the first approximation
is the same for all polymers at any temperature below
the glass transition temperature. In the second, more
accurate approximation, the coefficient of packing is the
same for each polymer at its glass transition temperatu-
re and equals kg = 0.667. At low temperatures (Tp ~ 6K)
the coefficient of packing of polymers are also ap-
proximately the same, and equal kg = 0.731.

Parameter tables and details of calculations are
available in references 10 and 16.

The GCVOL method

The group contribution volume (GCVOL) method
has been proposed by Elbro et a1. [17]. The method is
based on GCs according to the following equations:

V= Z n;j Vi (58.)

Vi=A+BT+GT (5b)

Tsimbanogiannis et al. [18] and Ihimes and Gme-
hling [19] later extended the GCVOL method for the alre-
ady existing 36 original groups with 24 new groups. The
extension included the densities of tertiary alcohols,
alkynes, carboxylic acids, allenes, cycloalcanes, fluori-
des, bromides, iodides, thiols, sulfides, sulfates, amines
and nitrocompounds. The new A;, B; and C; group para-
meters are given in reference 19.

Constantinou et al. [20] developed an alternative
GC method for the density of polymers (restricted to
25°C). An important advantage of the works by Elbro et
al. [17], and Ihimes and Gmehling [19] and Constanti-
nou et al. [20] over that of van Krevelen [9] and Askad-
skii [10,16] is that these authors showed that the same
consistent GC method can be applied in the prediction
of density for low—-molar-mass compounds (solvents),
oligomers, and polymers.

The performance of the GCVOL method is quite
satisfactory, with an average mean deviation of 1.5% for
the database of 1040 compounds. Using this method
very good results are also obtained for the density of co-
polymers, as shown by Bogdanié¢ and Fredenslund [21].
A comparison with the van Krevelen method for a num-
ber of polymers is shown in reference 22.

The solubility parameter of polymers

The solubility parameter, 3, is a very important pro-
perty, and has found a widespread use in many fields

and not just in the study of polymer-solvent ther-
modynamics. It is associated with the Flory—Huggins
model as well, but can also be used independent of it.
The solubility parameter is defined as

\/_AEvap
o= v (6a)

where V is the liquid molar volume and AE'®P is the inter-
nal energy of vaporization, which equals the heat of va-
porization minus RT (the product of gas constant and
temperature). This quantity has traditionally been called
cohesive energy. The solubility parameters of solvents
can be measured by direct experimental measurements
using this definition (Equation 6a). However, polymers
are not volatile and they degrade long before reaching
their vaporization temperatures. Their solubility parame-
ters are experimentally assessed via various indirect
methods (especially swelling and viscometric studies).
This often results in different values of the solubility para-
meters of polymers, as shown by van Krevelen [9].

Methods for estimating the solubility parameters

In the absence of experimental data, the solubility
parameters of both solvents and polymers can be esti-
mated using the GC methods. Three the most widely
used methods are those by Hoftyser-van Krevelen [9],
Small [23] and Askadskii [10,16]. All three methods are
similar, but are based on somewhat different
assumptions.

The Hoftyser-van Krevelen method

Hoftyzer and van Krevelen proposed [9] group va-
vap

Vv
tal cohesive energy is estimated from the group values

via Equation (1). Then the solubility parameter is estima-
ted using Equation (6a).

lues for cohesive energy, i.e., for the ratio . The to-

Parameter tables and details of calculations are
presented in reference 9.

The Small method

Small [23] proposed an additive method for the
so—called molar attraction constant F:

F =VEconi Vi (6b)

Small considered that the F quantity of Equation
(6b) shows better "additive" characteristics than cohesi-
ve energy. The total molar attraction constant is calcula-
ted from Equation (6b) and the solubility parameter is
calculated from the equation:
F
d== (S
v (60)
Parameter tables and details of calculations are
presented in references 23 and 9.
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The Askadskii method

Askadskii [10,16] suggested the calculation of in-
crements of the density of cohesive energy not by rela-
ting it to the molar, but to the van der Waals atom
volume:

8:\/—5—: 6d)

The parameter tables with details of calculation are
given in references 10 and 16.

All three methods described above are have com-
parable accuracy (their differences keep within 10 % in
most cases).

The Hansen method

Hansen [9,24] proposed an extension of the solu-
bility parameter concept which is particularly suitable for
solubility assessments for strongly polar and hydrogen
bonding fluids. He identified three contributions to the
cohesive energy and thus to the solubility parameter,
one stemming from nonpolar (dispersion or van der
Waals forces), (d), one from (permanent) polar (p), and
one from hydrogen bonding forces (h). Hansen sugges-
ted that these three effects contribute additively to the
cohesive energy density (i.e., the ratio of the cohesive
energy to the volume):

Ecoh = Eq + Ep + Ep (7a)

Therefore, using Equation (7a), the total solubility
parameter is estimated from the equation:

5 =3+ 82 +38 (7b)

Thus, the solubility parameter may be thought of
as a vector in a three-dimensional d-p—h space. The
above equation provides the magnitude of this vector.
Each solvent and each polymer can be characterized by
the three "solubility parameter increments”, 8y, 3, .

Hansen has presented extensive tables with the
solubility parameter increments (d,p,h) in his recent bo-
ok [24]. Van Krevelen [9] has proposed methods for all
three increments according to the following equations:

Z Fai

Sg=—"" (79
\Y
> ng
8p = IT (7d)
Z Fhi
Sh=——" 7
h v (79

Transition temperatures

It is impossible to understand the properties of
polymers if the transitions that occur in such materials
and specifically the temperatures at which these occur
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are not known. The main transitions are glass—rubber
transition and the crystalline melting point. However, se-
veral other transitions of secondary importance may
often be observed, e.g. the temperature of melting of
"liquid crystals". Transition temperatures are extremely
structure—sensitive, partly due to steric effects, partly
due to intra— and inter-molecular interactions.

The glass transition is by far the most important
among the many transitions and relaxations observed in
amorphous polymers. When an amorphous polymer un-
dergoes the glass transition, almost all of its properties
significant for processing and/or performance change
dramatically.

In addition, the glass transition plays a role in de-
termining the physical properties of semicrystaline
polymers, whose amorphous portions "melt" or "soften"
at Ty while the crystaline portions remain "solid" up to
the melting temperature T,,. A semicrystaline polymer
can be treated as a solid below Ty, @s a composite con-
sisting of solid and rubbery phases of the same chemi-
cal composition above Ty but below Tr,, and as a fluid
above Ty, The effect of glass transition on the physical
properties of semicrystalline polymers decreases with in-
creasing crystallinity.

The observed value of Tg is a function of rate me-
asurements. There is an important rate-dependent (ki-
netic) aspect of the glass transition. Nonetheless, the
glass transition undoubtedly has an underlying funda-
mental thermodynamic basis. Theories of the glass tran-
sition invariably treat the observed value of Ty as a
kinetic (rate—dependent) manifestation of an underlying
thermodynamic phenomenon; however, they differ signi-
ficantly in their description of the nature of this pheno-
menon at a fundamental level. Differences of opinion
also exist concerning the issue of whether or not the dis-
continuities observed at Tq in the second derivatives of
the Gibbs free energy (i.e., the coefficient of thermal
expansion and the heat capacity) justify referring to the
glass transition as a "second-order phase transition". A
detailed treatment of these fundamental issues is outsi-
de the scope of this paper.

At a relatively simplified practical and operational
(and thus theoretically nonrigorous) level of treatment,
T4 can be defined as the temperature at which the for-
ces holding distinct components of an amorphous solid
together are overcome, so that these components beco-
me able to undergo large—scale viscous flow, limited ma-
inly by the inherent resistance of each component to
such flow. Despite its apparent simplicity, this operati-
onal definition actually comprehends both of the key as-
pects of the physics of the glass transition. It states that,
when a solid is heated up to T, it acquires enough ther-
mal energy to be able to overcome two types of resis-
tance to the large-scale motions of its components: the
cohesive forces holding its different components toget-
her and attributes of the individual components (chain
segments in polymers) which resist viscous flow.
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Based on considerations summarized above, it is
not surprising that most theories of the glass transition
describe this phenomenon in terms of key physical in-
gredients whose values strongly depend on the chain
stiffness and/or the cohesive forces. The same state-
ment can also be made for all empirical correlations for
Tg, which either explicitly or implicitly attempt to account
for the effects of chain stiffness and cohesive forces.
One such empirical correlation is the relationship of van
Krevelen [9], which will be reviewed briefly below. Many
other empirical correlations, which usually express Tg as
a function of quantities calculated using group contribu-
tion methods, have also been used with limited success.

A detailed review article by Lee [25] provides
quantitative critical assessments, and extensive lists of
original references, for some of the best—known empiri-
cal correlations for Ty. Some of the many other interes-
ting attempts to estimate Ty, which were not reviewed by
Lee [25], include the method of Askadskii and Slonimskii
[26,27].

Methods for estimatling glass transition temperature

The van Krevelen—-Hoftyzer method

The equation for calculation the glass transition
temperature proposed by van Krevelen and Hoftyter [9]
is as follows:

Z Ygi

Y, i

To= = (8a)
where
Yg=2Ygi=Tg-M 8b)

Yy is called molar mass transition function. Yg; group pa-
rameters together with a detailed explanation of Ty esti-
mations are shown in reference 9.

The Askadskii metod

The starting equation relating Tq to the structure of
the repeating unit proposed by Askadskii [10,16,26,27]
is as follows:

Z AV

g R
° 2 KAY,

(92)

where coefficients of packing for polymers are kg =
0.731 and ky = 0.667, as described earlier, and
Ki= o/ (ko/kg—1) (Ob)

The values of K characteristic for each atom and
each type of molecular interactions are given in referen-
ces 10and 16.

Methods of estimation of the melting point

The van Krevelen—-Hoftyzer method

The equation for calculation the melting point of
polymers proposed by van Krevelen and Hoftyter [9] is
as follows:

Z Ymi

Y .
Tp=—0="t—o (10a)
M M
where
Y = 2 Ymi = TrM (10b)

Ym is molar melt transition function. Y, group parame-
ters altogether with detailed explanation of T,, estimati-
ons are shown in reference 9.

GROUP CONTRIBUTION METHODS FOR
ESTIMATING THE PROPERTIES OF
POLYMER MIXTURES

Vapor-liquid equilibrium

Group contribution methods may also be used for
semiquantitative prediction of phase equilibrium compo-
sitions, not only for mixtures with normal—boiling compo-
nents, but also for mixtures containing polymers
[28-33,44-46]. Some recent significant developments of
the available methods for mixtures with polymers will be
reviewed with an emphasis on application.

Just as for mixtures with low molar mass compo-
nents, two different approaches have been used for pre-
dicting vapor-liquid equilibrium (VLE) in mixtures which
contain polymers: activity coefficient models (y-models)
and equation of state (EOS). In both cases, the starting
point is the equality of the fugacity of each species in the
two phases:

tY .tk i=12, ... N (11)
where, for an N-component mixture, ?,V is the fugacity
of component i in the vapor phase and f L is the fugacity of
component i in the liquid phase. In the activity coefficient
approach (and neglecting the Poynting correction factor),
Equation (11) is usually rewritten as follows:

yidi P=xyor Pp (12)

where v is the activity coefficient of component i and (Ap}’

is its fugacity coefficient. If the vapor phase is an ideal

gas, ¢ =¢t™=1, and Equation (12) reduces to the

often—-used expression:
yiP = xyiPe (13)

In the EOS approach, Equation (11) is rewritten as:
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v L
Vo i =Xpi (14

where Q)Y and (?):‘ are the fugacity coefficients of com-

ponent i in the vapor and the liquid phase. ) and ¢ -

sat

in Equation (14) [and Q)Y and @7~ in Equation (12)] may
be obtained from any equation of state, using well-
known relationships from classical thermodynamics, for
example:

\
A oP| _RT PV
In(pi—o_[— [8Ni] - dV—In[NRT] (15)
\

where N is number of mole of species i and V is total vo-
lume. The key elements in VLE computations are the
liquid—phase activity coefficients, or the fugacity coeffici-
ents in both phases obtained from equations of state.
Both equations of state and activity coefficient models
are used as bases for group contribution prediction of
phase equilibrium in polymer solutions.

Group contribution versions of both approaches
are given below.

The models reviewed in this paper will not be fully
described here. The equations, the calculation procedu-
re and the parameters can be found in publications by
Oishi and Prausnitz [31] for the UNIFAC-FV model, by
Elbro et al. [32] and Kontogeorgis et al. [33] for the En-
tropic—FV model, by Bogdani¢ and Fredenslund [43] for
the GC—Flory EOS, and by High and Danner [44,45] for
the GC-LF ECS.

As the mole fraction of the solvent in a polymer,
apart from the very dilute region of the solvent, is very
close to unity, the mass fraction concentration scale is
more convenient than the mole fraction scale:

m; XiM;

W= — =

CXm XM
j j

(16)

where w;, m; and x; are the mass fraction, the mass and
the mole fraction of component i in the solution, respe-
ctively, and M; is the molar mass of the component /.
Due to the large difference in the molar masses of the
solvents and polymers, one often uses activity coeffici-
ents based on mass fraction rather than mole fraction.
The mass fraction activity coefficient, (;, of a solvent in a
solution containing polymers is defined as follows:

a = XV = W 0 (17

where o and y; are the activity and the mole fraction acti-
vity coefficient of the component /.

Activily coefficient models

The UNIFAC-FV model

Oishi and Prausnitz [31] modified the UNIFAC mo-
del [14,15] by including a contribution for free volume di-
fferences between polymer and solvent molecules to
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Iny; = In«/iC + In«/iR

where C and R refer to, respectively, the combinatorial and residual
contribution

,Mio['n__@ﬂ@]lzq{mﬂg}

Xi Xi) 2 6i B
Xifi Xi di

¢.: =
I ijfj I Zquj
j j

where the summation is over all components
n=2 wiRk =2 vk Ok
k
where the summation is over all groups

Rk = volume parameter for group k

Q = surface area parameter for group k

vki = humber of groups of type k in molecule i
xi = liquid mole fraction of component i

z = coordination number = 10

In W/iR = Z Vki (h"l Fk —In FQ))
k
where the summation is over all groups

Z Om Wkm

INTk=Qk|1-1In S/ -~
k k[ (% m Wmk) - S 6y
m

anm
el ]

Z Vmj Xj

Xm N
sznjxj
j n

o _ Om
"2 Qe X
n

amn = group interaction parameter for the interaction between m and n

Tk = the residual activity coefficient of group k in a reference solution
containing only molecules of type i

Figure 1. Original UNIFAC equations [14]

arrive at the following expression for the activity coeffici-
ent of a solvent, /, in a polymer:

comb attr

Iny; = Iny; + Iy + Inyrv (18)

combinatorial residual free-volume

where y; is the activity coefficient of the solvent i at the

solution temperature T, 17°™ is the combinatorial contri-

bution to the activity coefficient (providing the contributi-

ons due to differences in molecular size), and yf‘m is the

attractive contribution (frequently named residual, provi-
ding contributions due to molecular interactions) to the
activity coefficient. Both contributions are identical to the
original UNIFAC model [14] contribution (Figure 1). The
free volume contribution to the activity coefficient, Yrv‘ is
calculated by means of the Flory expression,
-

-1/3 y

Vit -1 Vi

Iy ¥ = 3Ciln S| | PR (19)

e -1 G W

where Cj is an external degree of freedom parameter,
and v; is the reduced volume of component /.

Molecules are divided into groups as defined by
the method. The model parameters for these groups
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(group areas and volumes and the group interactions
parameters for all possible binary pairs of groups) are
obtained from the UNIFAC tables [14,15,29].

The Entropic—FV model
Elbro et al. [32] and Kontogergis et al. [33] have

shown that the two terms Iyl and Im/®°™" in Equation

(18) may be replaced by a much simpler expression for

the so—called entropic activity coefficient, v°™":

entr

Inys = ™+ 12" (20)

where this entropic part is:
FV
entr _ In (I)I_

Fv
di
Inyi = +1-—

Xj Xj (2 1 )

and (I)FV is the free—volume fraction associated with com-
ponent i:

FV XV i
oi =

- Z XVij
j

@2)

The Entropic—FV model [33] is based on the free—
volume definitions given by:

Vii = Vi— Vi @3)
where
Vi* = Vi @4

and on the attractive term of modified UNIFAC [34] with
linear temperature dependent UNIFAC parameters [34]:

8mn = 8mn1 + 8mn2 (T - To) 25)

Vi, Vi* and vy, in the above expressions are the liquid
molar volume, the "inaccessible volume" and van der
Waals volume, respectively.

For the UNIFAC-FV and the Entropic—FV models
the densities of the pure solvent and pure polymer at the
temperature of the mixture of interest, the structure of
the solvent and polymer and the molar masses of all
components are required. The densities of both solvent
and polymers may be predicted within an average mean
deviation of only 1.5% using a contribution method by
Elbro et al. [17], and Ihimes and Gmehling [19].

More recent approach in the FV term

Despite the overall successful performance of En-
tropic-FV and UNIFAC-FV models for a number of
systems and types of phase equilibria, a number of re-
searchers [35-43] have shown over the last several
years that the combinatorial-FV terms of both the Entro-
pic-FV and UNIFAC-FV models have a number of defici-
encies. Their intention was to improve the expression for
different systems, different purposes or particular cases
only. The aim of this section is not to give a complete re-
view of these models. For this, the reader is referred to
references 35-43.

Equations of state

The GC-Flory EOS

The GC-Flory ECS [44,47,48] is a group contribu-
tion extension of the Flory equation [49], and like the
EOS of Flory it is derived from the generalized van der
Waals partition function. The group contribution modifi-
cation permits the prediction of solvent activity, given
only the structures of polymers and solvent involved.
The GC-Flory equation contains a free—volume and at-
tractive energy term:

5 _NRT viBic JrEe"‘tr
Y, \Y

@6)
\~/1 3 1

where n, v, V and C are the total number of moles in the
system, the reduced volume, the total volume and the
number of the external degree of freedom parameter,
respectively. The attractive energy term of the partition
function similar to the Flory expression has been adop-
ted, but a non-random UNIFAC-like group contribution
approach for the molecular parameters has been appli-
ed instead of the random mixing expression of the Flory
model.

Expressions for the activity coefficients are derived
from the EOS using classical thermodynamics. Writing the
three contributions to the activity coefficients separately

Iy = Iy Y IR @7
combinatorial free volume attractive
then
di di
I =In e - ©8)
X X

|n'\{?ttr=1 /22qi L |:8ii (\Nl)—Sii(\Nli):|+1— Inz 6,- exp (—ASji /RT) -
RT i

0j exp (-Agi/RT)

@9
| 2 Ok exp (-Ae/RT)
k
173 :
Vit =1 Vj
V=31 +C)In|— ~-Giln— (30)
V81 v

where ¢; and 6; are the segment volume fractions, and sj;
and Agjj are energy interaction parameters. Equation (26)
can in principle be applied at all pressures and tempera-
tures, but it can be simplified for normal-pressure appli-
cations by solving for the volume roots at zero pressure
instead of the pressure of the system.

The GC-lattice—fluid EOS

A group contribution lattice—fluid equation of state
[45,46] (GC-LF EOS) is a modification of the equation of
state derived by Panayiotou and Vera [50] which is ba-
sed on the lattice statistics development of Guggenheim
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[51]. Shown below is only the exact equation in terms of
reduced variables:

31)

where P is reduced pressure of the mixture, z is coordi-
nation number (z = 10), q is surface area parameter for
the pure component of mixture and r is number of occu-
pied lattice sites in the lattice for the pure component or
the mixture.

From this equation of state, using classical ther-
modynamics, the mass fraction activity coefficient of a
solvent in a solution is obtained:

Vi y \Nl_.l
InQi=In¢i—Inwi+|nT'+qi|n ~v (,N_) .
v V-1 v
20ip, 0| zq; -
% +%'”r" (32)
T T

where T and T; are the reduced temperatures of the
mixture and of the component /, Oip is the surface area
fraction of the component i in the pure state at the tem-
perature and pressure of mixture, and T is the nonran-
domness parameter of a molecule of the component J
surrounding a central molecule of the component /.

GC-Flory and GC-LF EOS calculations require
structures of the solvent and polymer and the molar
masses of all compounds. It should be stressed that an
equation of state does not require pure component and
mixture densities.

Discussion

The purpose of this section is to present an exten-
sive evaluation of the capability of the described models
in predicting activity coefficients for mixture with
polymers. Extensive examples of predicted solvent acti-
vity coefficients will be shown, both at infinite dilution
and finite concentrations. These are compared with the
corresponding experimental values. All mentioned mo-
dels: the UNIFAC-FV, the Entropic-FV, the GC-Flory
EOS and GC-LF EOS were investigated for activity cal-
culations in numerous systems of different solvents with
different polymers in references 52-55. All models are
based on the group contribution approach; the UNI-
FAC-FV and Entropic—FV models are activity coefficient
models while the GC-Flory and GC-LF models are
equation of state models. It should be underlined that all
these models are purely predictive in the absence of any
adjustable parameter.

Figures 2-5 show the results [52] for solvent acti-
vity coefficients at infinite dilution for more than 100
polymer solution.

Each model has its advantages and shortcomings
for different types of systems. The advantages and disa-
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Figure 2. Calculated activity coefficients at infinite dilution using
the UNIFAC-FV, logQga, versus experimental data, logQayp for
polymer solutions [52]
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Figure 3. Calculated activity coefficients at infinite dilution using
the Entropic-FV model, logQda, versus experimental data,
logQxp, for polymer solutions [52]

dvantages of equations of state and activity coefficient
models have been discussed elsewhere [52-55] and will
not be repeated here, except to underline that an equation
of state does not require pure component and mixture den-
sities. The accuracy of activity coefficient models is rather
sensitive to pure component and mixture densities. The
major drawback of these models is that they require accu-
rate density data for the polymer at the temperature of the
system, which is difficult to find. The major drawback of
GC—Flory EOS and the GC-LF EOS is that, compared to



G. BOGDANIC: GROUP CONTRIBUTION METHODS FOR...

Hem. ind. 60 (11-12) 287-305 (20086)

5.0
.
=
§ 4.0 *
“.LI' .
Q
<)
= 3.0 -
8 -
a
=1)]
=]
= 2.0+ e .
.
.
L4
1.0 +
e
0.0 =~ T T T T
0.0 1.0 2.0 3.0 4.0 5.0

log Q7,,

Figure 4. Calculated activity coefficients at infinite dilution using
the GC—Flory, logQZa, versus experimental data, IogQ°e°xp, for
polymer solutions [52]
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Figure 5. Calculated activity coefficients at infinite dilution using
the GC-LF model, logQ¥%a, versus experimental data, IogQé’xp, for
polymer solutions.

activity coefficient models, only a relatively small number
of group parameters have been determined.

The activity coefficient approach may be preferred
for VLE at low pressures due to its simplicity. This has
led Kontogeorgis et al. [33] to investigate the applicabi-

lity of Equation (20) for interacting systems, where the

term Inyi'=1ttr is not equal to zero. It was found that using

the entropic activity coefficient model by Elbro et al. [32]
attr

combined [38] with Inyi™ from UNIFAC gives superior
results compared to those of Oishi and Prausnitz [31].
For example, UNIFAC-FV is not capable of representing

phase behavior of strongly associating systems. At high
pressures, the EOS approach could be used.

The results obtained with the GC-LF EOS model
are of the same quality as the results obtained by the
Entropic—FV model for finite concentrations as well as for
dilute regions. Relatively poor prediction of the Entropic—
FV model for solutions which contain the chloro groups
may be attributed to uncertainties in the group contribu-
tion interaction parameters for CCl, and CClz groups in
new temperature—dependent UNIFAC parameter tables
[34]. The GC-Flory model was found to be the best for
solutions with alcohols and acetic acid. This is a signifi-
cant result, especially if we consider that no additional
hydrogen bonding parameters are used in the revised
GC-Flory model. It can be seen that the GC-Flory mo-
del is capable of solving troublesome cases described
earlier such as PVC solutions and alcohol-polymer solu-
tions. Until now, the GC-Flory model has been the only
model tested which can reasonably predict VLE behavi-
or for solutions with PVC and hydrocarbons. Over the
whole spectrum of polymer-solvent systems investiga-
ted here, there is not a single model that is superior to
the GC-Flory ECS.

Liquid-liquid equilibrium

Knowledge and reliable estimates of the behavior
of polymers and polymer solutions is very important for
the prediction of process performances, primarily beca-
use many polymeric materials are produced in a soluti-
on with a solvent. A problem which often arises is how to
remove (devolatilize) low molar mass constituent(s) from
the final product, i.e. polymer. A part of this problem in-
volves solving VLE problems, usually encountered at
low concentrations of the solvent, whereas liquid-liquid
equilibrium (LLE) often takes place in the opposite con-
centration range, i.e. at low concentrations of the
polymer. The activity of the polymer is a predominant fa-
ctor in LLE calculations for polymer solutions.

For mixtures of low—molar mass compounds only,
it can be stated that mixing is the rule and the presence
of two liquid phases is the exception. The contrary typi-
cally occurs for polymer solutions, for which the presen-
ce of two liquid phases is evidenced very often.

Phase separation in polymer solutions may occur
upon cooling to low temperatures — upper critical soluti-
on temperatures (UCST) behavior, or upon heating to
high temperatures — lower critical solution temperature
(LCST) behavior. A system containing a poor solvent
exhibits both UCST and LCST. UCST behavior is due to
an unfavorable energy effect that arises from component
differences in chemical nature and molecular force fields
between the components. LCST is detected even for
nonpolar or nearly athermal systems, usually at tempe-
ratures approaching solvent critical temperatures and at
pressures above atmospheric. LCST behavior is due to
an unfavorable entropic effect that overcomes the favo-
rable enthalpies of mixing. For polymer solutions, LCST
behavior is due to a difference in free volume between
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the polymer and the solvent. Unlike UCST, LCST behavi-
or tends to be very pressure-dependent. Usually, LCST
lies above UCST However, when specific interactions
are present (e.g. aqueous polymer solutions), a closed—
loop phase behavior is observed. The LLE phase beha-
vior depends significantly on the molar mass and the
molar mass distribution of the polymer.

In the case of LLE, Equation (14) often takes the
following form:

)= ma®i=1,2 .. (33)

or is expressed more generally, in terms of fugacity coe-
fficients:

@x)% = @@x)°i=12.. (34)

where a and b represent the two liquid phases.
Equations (33) and (34) imply that LLE can be cal-
culated if a suitable model for the activity coefficient (or
an equation of state) is available.
According to thermodynamics, complete miscibi-
lity is achieved if

PAG
o7

>0 (35)

If a system is miscible, then AG < 0 (the Gibbs
energy of mixing is negative), but the second derivative
criterion, Equation (35) offers a more rigorous criterion
for miscibility. At critical solution temperatures (onset of
two—phase appearance) the following equations hold
true:

NG| | a6 @)
a95 | | o¢3
or
dlnoy | | Plnau
392 )= | gz =0 ©7)

It should be mentioned that, due to a significant di-
fference in size between the polymer and solvent mole-
cules, critical solution point(s) are located in the
extremely diluted polymer mole fraction area. On the
molar basis, the liquid mixture is essentially a pure sol-
vent (i.e. the mole fraction of the solvent is close to
unity), and the polymer molar thermodynamic functions
are, in practice, close to the polymer solution properties
at infinite dilution. As a consequence, the solvent molar
activity coefficient is close to unity. The polymer molar
activity coefficients can have extremely low values, de-
pending on the nature of the system and on the polymer
molar mass. It is important to point out that, since expe-
rimental data of polymer activity coefficients are not ava-
ilable, the magnitude of the polymer activity coefficients
cannot be checked experimentally.

Figure 6a shows the variation of the Gibbs energy
of mixing (AGM) curve for PVAL/water system at 420 K
within the liquid-liquid immiscibility region. The curve re-
fers to equilibrium points in the UCST branch. A liquid
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mixture will only separate in two (or more) phases if the
process leads to a decrease of the total Gibbs free
energy. At the equilibrium state, the system Gibbs
energy has a minimum, and the chemical potential of
each of the components is equal in the two stable
coexisting phases. If, at certain temperature, a given
liquid binary mixture is immiscible, the system AGM must
have at least two inflection points. It is very difficult to
graphically identify a change of curvature in the molar
AGM curve of a polymer solution (see Fig. 6a). In order
to be able to detect curvatures in AGM function, the nu-
merical difference between the AGM function and the
straight line that connects two points on the curve (in
our case it was for Xpolym = O and Xpolym = 0.18) (for
practical purposes, that function is here called (AGNI -
se) has been calculated, and the results are presented
in Figure 6b. As expected, two inflection points can cle-
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Figure 6a. Plot of AGMYRT versus molar fraction of the polymer
for PVAL jwater binary mixture [56] at 420 K.
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Figure 6b. Plot of (AGM/RT—se) versus molar fraction of the
polymer for PVAL /water binary mixture [56] at 420 K.
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arly be identified. The apparent linearity of the molar
AGM versus molar fraction of the polymer is a universal
phenomenon of LLE of polymer solution.

Polymer solutions

Practical phase equilibrium calculations are perfor-
med using either activity coefficient or EOS models. In
EOS models, a single equation is used to represent all
the fluid phases. From the thermodynamic point of view,
this is a more powerful approach than the activity coeffi-
cient approach, as a single equation provides uniform
representation of the thermodynamic properties in the
two—phase and one—phase regions. It is not only appli-
cable to wide pressure and temperature ranges, inclu-
ding critical and supercritical conditions, but also makes
it possible to calculate various properties other than tho-
se associated with phase equilibrium.

In principle, LLE compositions may be calculated
using any model for Gibbs energy. Models relying on a
group contribution approach, such as the UNIFAC mo-
del [14,15,29], have been applied to low molar mass
compound mixtures, but they require a special set of pa-
rameters [57]. Recently, y~model and EOS relying on a
group contribution approach have been extended to
LLE calculations for polymer solutions using parameters
based on VLE by Kontogeorgis et al. [58] and Saraiva et
al. [59], but only qualitative results were obtained. Better
results were obtained by Lee and Danner [60], using the
GC-LF EOS. However, experimental evidence by Vuko-
via et al. [61] shows that small structural changes, such
as ortho and para substitution on the aromatic ring, may
induce large modifications to the miscibility maps of
blends. Defining the groups as it is usually done in, for
example in UNIFAC method [14,15,29] cannot take into
account such effects. Models which are based on the re-
peating units of the polymer are more flexible and may
provide correlation and predictive methods for polymer
solution behavior, as a function of chain length, and for
copolymer solutions dependence on copolymer
composition.

Activity coefficient models
The segmental interaction UNIQUAC-FV models

The segmental interaction UNIQUAC model propo-
sed by Bogdani¢ and Vidal [62-64] is derived from the
Entropic-FV model [32,33], applying the approach to
associate the nonideality of a polymer—solvent mixture
with polymer segment-solvent interaction parameters
rather than with the polymer-solvent interaction parame-
ters or functional group interaction parameters. The gro-
ups are defined as segments, or monomer repeating
units of polymers or copolymers, or as the solvent mole-
cule. This is usual for the application of the mean field
theory [65]. Such choice reduced the flexibility of the
model, but it is a price one should accept for a fair predi-
ctive power. This principle has also been applied by
Chen [66], but, as underlined by the author, free—volume

effects were not considered, and therefore lower critical
solution temperatures (LCST) could not be represented.

The activity coefficients of the segmental interacti-
on UNIQUAC-FV model [62-64] are given by the Equati-
on (18). Free—volume (FV) contributions are combined in
a single term, the so—called entropic-FV part, described
by the Equation (21). Free—volume is defined as by Kon-
togeorgis et al. [33].

For the calculation of the residual term, Iny{*%, the
mixture is considered as a solution of segments, and the
molar fraction of each segment is calculated as:

ncomp

1
X=  ncomp rass . (38)
xjoﬂ,)
] m

where x; and x; are the mole fractions of the components
i and j. The summations are extended to the total num-
ber of components, ncomp, and to the total number of
segments, nseg. vﬂ) and vﬂ? are the numbers of se-
gments k in the component i, and of segments m in the
component j. Their values are equal to the number of re-
peating units for a homopolymer, and to one for the sol-
vent. For a copolymer, the value of v|((') is obtained from
the molar mass of the copolymer, M;, from the molar fra-
ction, Xf('), of each copolymer segment k, which chara-
cterizes the copolymer composition, and from the molar

mass of each segment My:

W= ——— X (39)

From the molar fractions Xy, the activity coefficients
of the segments Tk in the mixture are calculated by
applying a model of nonideality. Authors have used the
residual term of the UNIQUAC model [67]. For a binary
mixture the expression of In T is:

nseg nseg

= Q[ 1-1n( Y Optmi) - nse(?:]mAJ (40)
m m OnThm
n

In this expression Qg represents the surface para-
meters of the segments, derived from the van der Waals
area, and ®, and ®,, their surface fractions:

XmQ

Om= roeg m @1)
z Xnon
n

The values of 1, are derived from the interaction

parameters between segments, anm, by the relation:

a
Thm = €XP [ F?_? ] 42)

The segmental interaction parameters are assu-
med to have a linear temperature dependency, which is
expressed as:
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8nm = 8nm1 + 8nma (T—To) (43)

where m and n denote segments in the UNIQUAC table,
and Ty is a reference temperature equal to 298.15 K.

The activity coefficients of the segments Ff(') in the
pure components must also be evaluated. For a solvent
or a homopolymer, they are equal to one and for co-
polymer they are calculated using Equation (40), where
the surface fractions will be obtained from the mole fra-

ctions of the segments in the pure copolymer, Xf(i).

Finally, the activity coefficients of the components,
solvent, homopolymer or copolymer, are obtained by
the relation:

In® =2 of? (in T - In T{") (44)
k

It should be underlined that the term Inl"f(') in Eq.
(40) takes into account the internal repulsion effect in
copolymers [65,61].

The procedure requires the densities of the solvent
and of the polymer at the temperature of the mixture, the
van der Waals volumes for the calculation of the free vo-
lume—combinatorial contribution, and the molecular sur-
face parameters of the segments for the application of
the UNIQUAC model.

The segmental interaction parameters are presen-
ted references 62-64, together with references to data
used in parameter estimations.

Pappa et al. [68] proposed a very similar segmen-
tal interaction UNIQUAC-FV model, which takes into
account the pressure effect on LLE, due to the fact that
pressure—dependent molar volumes are incorporated in
the free—volume term. This model will not be described
here, due to its great similarity to the UNIQUAC-FV mo-
del by Bogdani¢ and Vidal. The equations, the calculati-
on procedure and the parameters can be found in
publications by Pappa et al. [68].

The empirical method for predicting the LLE of a binary
polymer system

Vetere [69,70] proposed combining the Flory—
Huggins equation (empirically modified to account for
free—volume effects) with the NRTL expression for ener-
getic effects. The two NRTL parameters were correlated
with the solubility parameters of components. The relati-
ve importance of the combinatorial and residual contri-
butions was analyzed and satisfactory results (for both
VLE and LLE) were obtained for some binary systems,
including agueous polymer solutions. This recent appro-
ach is under development.

Equation of state models
The GC—Flory EOS

GC-Flory EOS has been used to calculate activity
coefficients in polymer—solvent mixtures for several
years now. As mentioned earlier, using the parameters
based on VLE, GC—Flory EOS has also been applied to
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predict the miscibility/immiscibility phenomena of mono-
disperse polymer-solvent systems. This model was
shown [59] to be limited to qualitative prediction of the
phase behavior of such systems. A recent adaptation of
the GC-Flory EOS model for LLE calculations [71] relies
on experimental LLE data parameter estimation. The
prediction of the LLE phase behavior of polymer soluti-
ons with the new LLE parameter table showed a signifi-
cant improvement over the ones obtained using the VLE
parameter tables. The comparison of prediction accura-
cies showed that the model is capable of quantitatively
predicting the most relevant types of phase diagrams
typical of LLE of polymer solutions.

The problem of fitting the GC—Flory EOS to experi-
mental LLE data was reduced to finding the ¢,, and
Aenm parameter values that will predict LLE composition
as closely as possible to the experimental values. In all
examined cases the overall mean absolute deviation
between the experimental and calculated LLE compositi-
ons was no more than 1.5 wt.%. The obtained gy, and
emn parameter values are listed in reference 71. It is
worth noting that all these parameters were estimated
only from low—molar mass pure components and mixtu-
res thereof.

Discussion

Most polymer solutions are typically highly nonide-
al; i.e., both an expression for the entropy and the en-
thalpy of mixing need to be known. However, a few
nonpolar solutions where the repeating unit of the
polymer is structurally similar to the solvent (e.g.,
polyethylene/alcanes, polystyrene/benzene, polyvinyl
acetate/ethyl acetate) can be considered to be athermal;
i.e., the heat of mixing is approximately zero. These
polymers and solvents have the same or very similar so-
lubility parameters. Thus, experimental phase equilibri-
um data for athermal polymer solutions can help
checking expressions for the entropy of mixing. For re-
gular solutions, e.g., benzene/heptane, carbon mo-
noxide/methane, only an expression for the heat of
mixing need be developed; the entropy of mixing has
the ideal value. Finally, ideal solutions, e.g.,
hexane/heptane, ethanol/propanol, have the ideal value
for the entropy of mixing and zero enthalpy of mixing.
This suggests that even the simplest nonpolar polymer
solutions are nonideal due to a nonideal value of the
entropy of mixing.

As it was mentioned earlier, the extension of exis-
ting VLE models to LLE, as shown by Kontogeorgis et
al. [58] and Saraiva et al. [59], led only to qualitative re-
sults of LLE phase behavior. Better results were obta-
ined using the GC-LF EOS model by Lee and Danner
[60]. Models which are based on the repeating units of
the polymer are more flexible, providing correlation and
predictions for polymer solution behavior, as was shown
by Chen [66], but, as underlined by the author, free-vo-
lume effects were not considered, and therefore LCST
could not be represented.
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Figures 7-10 illustrate the ability of the UNIQUAC-FV
segmental interaction model [62] and the GC—Flory EOS
[64] to calculate LLE for binary polymer solutions.

A detailed investigation of the results shows that
LLE correlation/prediction of nonpolar, moderately polar
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Figure 7. Correlation and prediction of LLE for PBD/1-octane
system by the UNIQUAC-FV segmental interaction model [62]
(Exp. data by G. Delmas, P Saint-Romain, Eur. Polym. J., 10
(1974) 1133).
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Figure 8. Correlation and prediction of LLE for poly(S-co—
BMA)/MEK system by the UNIQUAC-FV segmental interaction
model [62] (Exp. data by M. Kyoumen, Y. Baba, A. Kagemoto,
Macromolecules, 23 (1999)1085).
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Figure 9. Coexistence curves for HDPE/n—-hexane systems as
predicted by GC—Flory EOS [64] (—).

Exp. data (s, o) by Kodama, Y.; Swinton, F.L. Brit. Polym. J., 10
(1978) 191, and (m) by Orwol, R.A.; Flory, PJ. J. Am. Chem. Soc.,
89 (1967) 6822.
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Figure 10. Coexistence curves for PIB/n—-hexane systems as pre-
dicted by GC—Flory EOS [64] (—).

Exp. data by Delmas, G.; Saint-Romain, P Eur. Polym. J., 10
(1974) 118383.

and polar systems with strong specific interactions is
possible using the UNIQUAC type models. The results
obtained with the segmental interaction UNIQUAC-FV
models proposed by Bogdani¢ and Vidal [62-64] are of
the same quality as the results obtained by Pappa et al.
[68]. The lower and upper critical solution temperatures
as well as the closed loop diagrams for numerous
systems are well correlated/predicted, using weakly
temperature dependent UNIQUAC-FV parameters. Pro-
bably the main limitation is the immediate proximity of
the critical point of the solvent, where the excess volume
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of the solution cannot be described. The results obta-
ined by the GC-Flory EOS are also very good. However,
the major drawback of using GC-Flory EOS is only a re-
latively small number of group parameters determined
until now, however this recent approach is under
development.

Polymer blends

Over the years, there has been a strong interest in
understanding the principles governing the miscibility
and phase domain formation of multicomponent
polymer systems. Simple models that provide a useful
framework for describing blends with controlled phase
behavior have emerged, among which the
Flory—Huggins equation [72,73] and the empirical Flory—
Huggins ¢y models [74,75] have been the most popular.

It is known that miscibility in polymer blends is
strongly dependent on the chain microstructure. Com-
position and sequence distribution in a copolymer, ste-
reo—configuration, branching and crosslinking are
structural features affecting local environments, whereas
the size (molar mass) and shape of molecules (chain
flexibility) have long-range effects. The effect of molecu-
lar size on miscibility is clearly described [76]; miscibility
decreases with increasing molar mass. The combinatori-
al part in the Flory—Huggins theory [74,75] accounts for
this effect.

The term miscibility has widely been used [65] to
describe multicomponent polymer blends whose beha-
vior is similar to that expected of a single—phase system.
The term does not necessarily imply mixing at a se-
gmental level, but suggests that the level of such mixing
is adequate to yield macroscopic properties expected of
a single—phase material. It should also be noted that
mixing polymers to obtain a blend invariably involves not
only thermodynamic consideration, but also the thermal
and mechanical histories of the system which impact the
kinetic aspects associated with the attainment of equili-
brium processes. This paper discusses only the equili-
brium thermodynamic aspect.

The mean-field theory

More than a decade ago, a simple mean-field the-
oty of random copolymer blends was proposed, based
on a mixture of polymer segment concept [77,65]. It was
shown that using the mean-field approach, phase beha-
vior of blends could be described by pair interactions
between all segments in the blends. This theory also
provided a general explanation for the effect of chemical
composition on miscibility.

In studies of polymer—polymer miscibility by Am-
herst and Zagreb group (see for example references 61
and 78), the mean-field model [77,65] was applied. This
model is reliable for correlating and describing the pha-
se behavior of polymer blends. It has become widely
used in the description of miscibility/immiscibility pheno-
mena. It will be briefly describe here.
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Based on a lattice theory, the Flory—Huggins
expression for the Gibbs energy of mixing [72,73] of a
mixture of two polymers can be written as:

AGM g 92

——=—Inds + I(I\)I In 02 + plend P192 (45)
2

combinatorial term residual term

where Ny and N, are the number of lattice cells occupi-
ed by polymer 1 and 2, ®; and @, their volume fractions
calculated on the basis of lattice occupancy, and Yplend
is a dimensionless overall interaction parameter for the
polymer—polymer system. In practice, the yplend parame-
ter exhibits considerable variation with temperature,
pressure and blend composition. The combinatorial
contribution of the Equation (45) to the Gibbs energy of
mixing is due to the differences in sizes of molecules,
while the residual contribution is essentially due to ener-
getic interaction.

The mean-field theory provided the evaluation of
Yblend Parameter in a group contribution framework in
terms of segmental interactions, where segments are
usually defined as monomer-repeating units. This is an
arbitrary assignation and implies that ypjenq parameters
must be the function of segmental definition. In this mo-
del, a polymer molecule is assumed to consist of a gi-
ven number of segments, while a polymer blend is a
mixture of these segments. Further, it is assumed that
each segment occupies one lattice site. The excluded
volume effect is taken into account by a single-site
occupancy requirement. The residual term of Equation
(45) assumes that molecular segments are randomly
mixed on a lattice. The model neglects free-volume con-
tributions to the Gibbs energy of mixing and does not ta-
ke into account any possible directional interactions.

For the most general case of mixtures of two ran-
dom copolymers of the type (A1Byn1/(Ci—yDy)na, the
overall interaction parameter ypiend Can be expressed as
a linear combination of segmental interaction parame-
ters, ¥

Yolend = (1 =X (1-y) xac + (1 =X) ¥ xap +
+Xx(1-y)ysc + XY %80 —X (1 =X) %aB ~
-y (1-V) xcp (46)

where the definition of the respective y; parameters is
obvious from their subscript, and copolymer compositi-
ons x and y should be expressed on the basis of lattice
site occupancy.

The first four terms on the right-hand side of
Equation (46) define additive intermolecular interactions
between the non-bonded component monomers in the
mixture of two copolymers, weighted according to the
copolymer compositions, whereas the remaining two
terms define the intramolecular forces between the two
different monomers comprising each of the copolymers.
In Equation (46), x and y should be used in terms of vo-
lume fractions, but very often mass or mole fractions are
used. Furthermore, it was pointed out by Nishimoto et
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al. [78] and Salamons et al. [79] that in many papers in
which Equation (46) has been used, authors failed to re-
port the basic segmental units. In papers cited in refe-
rences 61 and 78, the calculation employed volume
fractions based on Bondi’'s van der Waals volumes [8]
which may be considered as the best expression for the
lattice occupancy.

The basic criterion for miscibility of blends is that

Yblend MUSt be less than a critical value yEht 4, which for
monodisperse polymers may be calculated on the basis
of the number of lattice cells occupied [81]:

Ablend = 0.5(N*° + Nz*%)? 47)

where Ny and N, are the number of lattice cells occupi-
ed by a molecule of polymer 1 and 2, respectively.
Equation (47) may be interpreted as defining Ny and N»
as the degrees of polymerization or the number of repe-
ating units of polymers, if the molar volumes of all repe-
ating units have similar values. It turns out that this is a
valid approach for many polymer systems, and that

Xg.’;tnd calculated from the number of repeating units is
quite satisfactory in many cases. However, it is obvious
that segmental interaction parameters depend on Xg.’;tnd
and on the van der Waals volumes used.

The boundary between miscibility and immiscibility
domains for copolymer—copolymer system is described
by a function expressed in terms of x and y, such that:

f(X,Y) = %blend — XEiend = O (48)

The mean-filed approximation is fairly satisfactory
when the mixture consists only of long chain molecules.
The most noteworthy conclusion from this analysis is
that a net exothermic heat of mixing promoting miscibi-
lity can be attained even when none of the individual in-
teraction parameters are negative, ie., favoring
miscibility, provided that one or both constituents are co-
polymers. This means that a favorable specific interacti-
on between the two component macromolecules may
not be an absolute requirement for their miscibility. It is
of course not suggested that such specific interactions
do not exists in certain cases, but miscibility, as defined
here, can occur in many cases where such a strong inte-
raction mechanism is absent.

In many of studies cited in reference 61 and 78,
the mean-field model was comprehensively tested and
proved to provide a very useful framework for describing
phase behavior of polymer blends, and no attempt is
made here to discuss the results in detail. Figures 11
and 12 are used only to illustrate the prediction of misci-
bility domains in comparison with experimental data for
binary polymer blends of poly(S—co-oCIS) and poly(S-
co—pClIS) with SPPO copolymers using the mean-field
model [78].

Experimental evidence from the figures above indi-
cates that small structural changes, such as ortho and
para substitution on the aromatic ring may largely mo-
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Figure 11. Miscibility of 50/50 wit% blends of poly(S—co-pCIS)
and SPPO copolymers. (o) one phase; (o) two phases; (—)
predicted miscibility/immiscibility boundary [78]. (Exp. data by R.
Vukovi¢, G. Bogdanic¢ et al., Thermochim. Acta, 306 (1997) 135).
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dify miscibility maps of polymer blends, yet the mean-fi-
eld model can still give a good description of the phase
behavior of such systems.

The Coleman—Graf-Painter mode/

After the mean-field model, which does not take
into account specific interaction, worth mentioning are
the Coleman-Graf—Painter model [82] and practical gu-
idelines for predicting and designing miscible polymer
mixtures, taking into account specific interactions. This

301



G. BOGDANIC: GROUP CONTRIBUTION METHODS FOR...

Hem. ind. 60 (11-12) 287-305 (20086)

model can be recommended for semiquantitative predi-
ctions in polymer blends. This paper has no intention to
review this model. For a thorough description of this mo-
del the reader is referred to reference 82.

The segmental interaction UNIQUAC-FV model

The segmental interaction UNIQUAC-FV model
described earlier [62] has also been successfully appli-
ed in correlating phase behavior of polymer blends, as
demonstrated by Figures 13-14.
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Figure 13. Miscibility behavior of homopolymer/copolymer
PPO/poly(oFS—co-pCIS) system as correlated (------- ) by se-
gmental interaction UNIQUAC-FV model (Exp. data by R. Vuko-
vié¢ et al., J. Appl. Polym. Sci., 30 (1985) 317).
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Figure 14. Miscibility behavior of copolymer/copolymer
SPPO/poly(oBrS-co-pBrS) system as correlated (—) by se-
gmental interaction UNIQUAC-FV model (Exp. data by R. Vuko-
vié, G. Bogdani¢ et al., J. Appl. Polym. Sci., 195 (1992) 351).
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It is encouraging that the model can successfully
predict LLE for polymer blends, which will be shown in
part 3 of the series of papers dealing with the segmental
interaction UNIQUAC-FV model.

THERMODYNAMIC DATABASES FOR POLYMERS

Extensive databases for thermodynamic polymer
properties are now available, and a significant amount of
experimental data has been reported in literature. Unfor-
tunately, there is an overall paucity of available informati-
on on the thermodynamic properties of polymers. The
type of data for different polymer systems varies consi-
derably in quantity, quality and in the nature of experi-
mental information provided, which makes tabulation of
the data difficult. The key information which is usually
unavailable is the distribution of polymer molar mass
(polydispersity significantly affect LLE calculations).

Pure polymer densities

Experimental data for a number of polymers are
correlated using the Tait equation and are summarized
in the DIPPR Polymer Project [12]. Recently, an extensi-
ve compilation of polymer densities using the Tait
equation has been presented by Rodgers [13].

Polymer and solvent solubility parameters

The most extensive compilation is provided in the
recent book by Hansen [24] and in the handbooks by
Barton [83,84].

Polymer-solvent VLE

Vapor-liquid data, both at intermediate concentra-
tions and at infinite dilution of the solvent, are available
in two extensive databases: DECHEMA and DIPPR
Polymer Project [12,85]. These databases are also ava-
ilable in electronic form. The data are restricted to single
solvent systems and often cover various temperatures. A
more recent compilation of VLE has been published by
Wohlfarth [86].

Polymer-solvent LLE

Many data are stored in the two above-mentioned
databases [12,85]. In DECHEMA database, data are
only cited as LCST/UCST temperatures and restricted to
single solvents. The DIPPR project provides full binodal
curves. In addition, LLE data are reported for a few
systems (mostly with polystyrene) with two solvents.

It could be concluded that commonly available lite-
rature lacks systematic reports on polymer-mixed sol-
vents data (VLE or LLE), especially in the form of
full-phase equilibrium measurements. Data are often re-
ported simply as "soluble/nonsoluble" or as "theta tem-
peratures" (critical solution temperature at infinite
polymer molar mass). Original papers are sometimes di-
fficult to interpret because data are presented in graphs
and other forms with problematic conversion.
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CONCLUSION

Why have so many different models been develo-
ped for polymer systems? The state-of-the-art can be
easily considered if taking into account that polymer so-
Iutions and blends are complicated systems with
frequent occurrence of LLE in many forms (UCST, LCST,
closed loop), significant effect of temperature and
polymer molar mass in phase equilibrium, free—volume
effects, and other factors causing these difficulties.

The choice of a suitable model depends on the
actual problem and demand, but especially on the type
of mixture (solution or blend, binary or multicomponent),
type of phase equilibrium (VLE, LLE, SLE), temperature,
pressure, concentration, and calculation (accuracy, spe-
ed, yes/no answer, or complete design). This paper dis-
cusses the performance of various models and their
range of application. Bokis et al. [87] in their recent re-
view paper list polymer models currently supplied in the
ASPEN-Plus Process Simulator.

The following can be concluded:

Many databases (some available in electronic
form) and reliable group contribution methods are ava-
ilable for estimating many pure polymer properties and
phase equilibrium of polymer solutions such as densiti-
es, solubility parameters, glass and melting temperatu-
res, and solvent activity coefficients.

Simple group contribution models based on UNI-
FAC, containing corrections for the FV effects, as well as
group contribution EOS satisfactorily predict solvent
activities and VLE for binary and ternary polymer so-
Iutions.

The combination of a simple FV expression such
as that employed in the Entropic—FV model and a local
composition energetic term such as that of UNIQUAC
seems to be a very promising tool for both VLE and LLE
in polymer solutions. It should be expected that such to-
ols may find a widespread practical use in the future.

Some of the future challenges in the area of
polymer thermodynamics should involve the correlation
and prediction of phase equilibrium of solutions conta-
ining polar and hydrogen bonding solvents and
polymers, more emphasis on multicomponent systems
including both mixed solvents and blend-solvent
systems, more emphasis on condensed phases especi-
ally LLE and SLE as well as water-soluble polymer
systems, emphasis on high—pressure systems involving
both typical nonpolar and polar macromolecules, deve-
lopment of new polymeric and "special materials", pro-
per account for the effects of crystallinity and
cross—linking with special attention to swelling pheno-
mena, and closer collaboration between academic insti-
tutions and the polymer industries in order to further
advancements in the area of polymer thermodynamics.
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PRIMJENA METODA DOPRINOSA ATOMNIH SKUPINA ZA PROCJENU SVOJSTAVA
POLIMERNIH SUSTAVA

(Nauéni rad)

Grozdana Bogdanié
Kozaréeva 7, 10000 Zagreb, Hrvatska

Posljednjih se godina intenzivno radi na izuCavanju principa faznog ponasa-
nja polimernih sustava i razvijanju termodinamickih modela koji mogu dati
kvantitativne informacije o svojstvima polimernih materijala ili o faznoj ravnote-
zi polimernih otopina/mjesavina. Modelima koji se temelje na metodama mo-
lekulske simulacije moze se vrlo dobro opisati fazno ponasanje kompleksnih
spojeva, otopina ili mjeSavina, u kojima su izrazeni razliCiti tipovi interakcija
izmedu kemijski razli¢itih atomskih skupina ili molekulskih segmenata. Medu-
tim, takovi su modeli u principu vrlo slozeni, s velikim brojem parametara, a
zahtijevaju i veliki broj eksperimentalnih podataka.

U ovom radu prikazani su novi, takozvani "inzenjerski modeli". Svi se temelje
na metodama doprinosa atomskih skupina ili segmenata molekula. Opisiva-
nje faznog ponasanja polimernih sustava primjenom bilo kojeg modela svodi
se na pronalazenje pogodnog izraza za Gibbsovu energiju mijesanja, AGM,
koji povezuje termodinamicka svojstva &istih tvari sa sastavom mogudih faza,
uzimajuéi u obzir neidealnost svih faza u ravnotezi. Na nizu je primjera poka-
zano da se, poznavajuéi parametre relativno malog broja funkcionalnih skupi-
na, mogu predvidjeti svojstva velikog broja kompleksnih kemijskih spojeva ili
smjese spojeva (otopine/mjesavine). Ukazano je i na probleme koji se susre-
éu pri proracunima fazne ravnoteze, a posljedica su ekscesnih svojstava oto-
pina/mjesavina. Analizirane su moguénosti novih termodinami¢kih modela za
predvidanje faznog ponasanja polimernih sustava i prikazani najnoviji rezultati
istrazivanja.

Kljuéne rije¢i: Metode doprinosa
atomskih skupina e Korelacija e
Predvidanje e Ravnoteza kapljevi-
na—para (VLE) e Ravnoteza kaplje-
vina—kapljevina (LLE) e Svojstava
polimernih sustava e

Key words: Group contribution
methods (GC) e Correlation e
Estimation e Vapor-liquid equili-
brium (VLE) e Liquid-liquid equilib-
rium (LLE) e Polymeric system
properties o
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