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Singular systems are those the dynamics of which
are governed by a mixture of algebraic and differential
equations. In that sense the algebrac equations
represent the constraints to the solution of the
differential part.

These systems are also known as descriptor,
semi-state and generalized systems arise naturally as a
linear approximation of systems models, or linear
system models in many applications such as electrical
networks, aircraft dynamics, neutral delay systems,
chemical, thermal and diffusion processes, large-scale
systems, interconnected  systems,  economics,
optimization problems, feedback systems, robotics,
biology, etc. Although singular systems are mostly
present in electric and electro-magnetic circuits, in the
sequel, will be shown their application in chemical and
process technology.

SINGULAR SYSTEMS IN CHEMICAL ENGINEERING

Recently, Bogdanovi¢ (1992) has shown that the
final superheater stage of a steam generator may have
the following mathematical description:

X(t)=f1 (a1 (t), x2(t), u(t), z(t),
0 = f2 (x1(1), x2(t), u(t), z(t)),

y(t) =z (x1(t), x2(t),

which is, exactly, one of the possible non-linear
representations of singular systems.

[t was also, shown that after linearization the
mathematical model is of the form:
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SINGULAR SYSTEM THEORY IN CHEMICAL
ENGINEERING THEORY - STABILITY IN THE
SENSE OF LYAPUNOV: A SURVEY

Singular systems are those the dynamics of which are governed by a mixture
of algebraic and differential equations. These systems also appear in chemical
engineering so some mathematical models were been shown to document
this fact. The complex nature of singular systems causes many difficultes in the
analytical and numerical treatment of such systems, particularly when there is
a need for their control. In that sense the question of their stability deserves
great attention. A brief survey of the results concerning the stability of a parti-
cular class of these systems, operating in free as well in the forced regimes, in
the sense of Lyapunov, are presented as the basis for their high quality dyna-
mical investigation.
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where:
X1(t) = ippy(t) — steam enthalphy at the superheater
outlet,

x2(t) = pppy(t) — steam density at the superheater
outlet,

x3(t) = Bzpp(t) — superheater wall temperature,

Xa(t) = pzpp(t) — steam pressure at the outlet of the
superheater,

x5(t) = Qppz(t) — heat transfer rate from wall to the
superheater,

x6(t) = Qgypp(t) — heat transfer rate from the gas to
the wall,

x7(t) = Bppy(t) — steam temperature at the outlet of
the superheater,
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xs(t) = Gppy(t) — mass flow rate at the outlet of the
superheater,

u(t) = Gppu(t) — mass flow rate at the input of the
superheater,

u(t) = pppu(t) — steam pressure at the input of the
superheater,

y({) = Bppi(t) — steam temperature at the outlet of
the superheater,

and which is, certainly, a normal canonical description of
a singular system.

Another, quite good example of a singular system
as a limiting case of a singular by a perturbed process,
has been presented in Lapidus et al. (1961).

Namely, the mathematical description of an
absorption column may be, basically, given in the
following form:

Xi(t) = Axq(t) + Aoxe(t) + Bru(t),
eXo(t) = Asx1(t) + Asxa(t) + Bou(t),
with the initial conditions:
x1(0) = x10, %2(0) = X20,
and the output equation as:
y() = Cix1(t) + Coxo(t),

where is a small positive parameter. When € - 0 the
before mentioned system, obviously, becomes singular.
Matrices in this model have the following structure.

1a2 0 0 0 O
sat a0 0 0
az aj a2 0 O

A1 =RAg = 0 az at a2 0
0 0O az al az
0 0 0 az ay
where:

Az : Oajj =0, except as1 = az.
As : Oajj =0, except aie = as.

a1 = —1.73, az = 0.63, ag = 0.54.

1 O 0
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and are calculated with real data from the process.

Gas turbines are widely used in a variety of power
generation and propulsion applications. The drive for
increased efficiency, work ratio and economy is leading
to increasingly complex systems with a resulting high
demand on the performance of the control system. The
turbine dynamics are often complex and vary with
operating and ambient conditions. As a result there has
been much recent research into the use of robust and
adaptive controllers for gas turbines.

In this example a mathematical model of a three
shaft gas turbine is considered, Wang, Daley (1993). For
the model used, it was shown that a recently proposed
adaptive control scheme for singular systems can be
applied.

The model used for the simulation study was
developed by Foss (1980) and was obtained through
the linearization of a thermodynamic model of a typical
three-shaft turbofan with reheating. The original
nonlinear model was developed using physical laws and
the parameters of the linearized model were determined
about several operating points. The linearized model
takes the following normal state space form:

X(t) = Ax(t) + Bu(t),
y() = Cx(t) + Dx(),

where (see notation):

A
T
X' =[NL, N, NH, P2LM, P2L, P2, B3,

PaH, p4i, pam, GH, Gc, ps, O],

1>

u'’ [GFe, Grr, AJ],

1>

y' = [G1, Gz, 6H].

nL — Low pressure shaft speed

n1 —Intermediate pressure shaft speed
nH - High pressure shaft speed

p2Lm — LP/IP intercompressor pressure
paL - IP/P intercompressor pressure
p2 - Combustor pressure

63 — Combustor outlet temperature
paH — HP/IP interturbine pressure

pal —IP/LP interturbine pressure

pam — Post-turbine pressure

GH - Hot stream mass flow

Gc - Cold stream mass flow

ps — Jet pipe pressure

B — Jet pipe outlet temperature

Gre - Engine fuel

Grr — Reheat fuel

Ay —Nozzle area

Gi1 - Fan mass flow

G2 — HP compressor mass flow
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pe — Nozzle pressure

621m — LP/IP intercompressor temperature

621 - IP/HP intercompressor temperature

64 - Thrust.

The system, although fourteenth order is
characterised by three dominant eigenvalues and as
shown in Daley, Wang (1993), can be represented by a
reduced order description:

x1() = Aix(t) + Bu(®)
Xo(t) = -Bou(t)
where:
_Ha®F
X0 = g((z(t)%

and:
A
x1(t) = [nL, ni, NH]

A
x2(t) = [P2Lm, paL, P2, 83, P4H, P4l, Pam, GH, Ge, ps, Os].

These equgqtions can equivalently be expressed by
a generalised state—space description:

Ex(t) = Ax(t) + Bu(t),
y() = Cx(t) + Dx(t),
where E is the singular matrix
g od , _fof gm
= 0A= UB= 0
B2 on A o 10 m®n

It is a convenient structure that can be used to
start dynamical analysis, synthesis or to develop an
adaptive controller, Daley, Wang (1993).

POSSIBILITIES OF DYNAMICAL ANALYSIS OF
SINGULAR SYSTEMS: SYSTEMS STABILITY
FEATURES IN THE SENSE OF LYAPUNOV: A
SURVAY

Consider  linear
represented, by:

Ex(t) = Ax()), x(to) = Xo, Y(t) = Cx(t), M
Ex(t) = Ax(t) + Bu(t), x(to) = X0, Y(t) = Cx(t), (2

singular  systems  (LSS)

with the matrix E possibly singular, where x(t) O R" is a
generalized state-space vector and u(t) 0 R™ is a
control variable. Matrices A, B and C are of the
appropriate dimensions and are defined over the field of
real numbers. System given by eq. (1) is operatinig in a
free and system given by eq. (2) is operating in a forced
regime, i.e. some external force is applied on it. It should
be stressed that, in the general case, the initial
conditions for an autonomus and a system operating in
the forced regime need not be the same. System
models of this form have some important advantages in
comparison with models in the normal form, e.g. when E
= | and an appropriate discussion can be found in Bajic
(1992) and Debeljkovic et al. (1996, 1996a, 1998).
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The complex nature of singular systems causes
many difficultes in analytical and numerical treatment
that do not appear when systems in the normal form are
considered. In this sense questions of existence,
solvability, uniqueness, and smothness are present
which must be solved in satisfactory manner. A short
and concise, acceptable and understandable
explanation of all these questions may be found in the
papers of Debeljkovic (2001) and Lazarevic et al. (2001).

The survey of updated results for singular systems
and a broad bibliography can be found in Bajic(1992),
Campbell (1980, 1982), Lewis (1986, 1987), Debeljkovic
et al. (1996.a, 1996.b, 1998) and in the two special
issues of the journal Circuits, Systems and Signal
Procesing (1986, 1989).

STABILITY IN THE SENSE OF LYAPUNOV

Stability plays a central role in the theory of
systems and control engineering.There are different
kinds of stability problems that arise in the study of
dynamic systems, such as Lyapunov stability, finite time
stabilty, practical stability, technical stabilty and BIBO
stability. The first part of this section is concerned with
the stability of the equlibrium points in the sense of
Lyapunov stability of linear autonomous singular
systems. As we treat the linear systems this is equivalent
to the study of the stability of the systems. The
Lyapunov direct method is well exposed in a number of
very well known references. Here we present some
different and interesting approaches to this problem,
including the contributions of the authors of this paper.

LINEAR AUTONOMOUS SINGULAR SYSTEMS

Stability definitions

Definition 1. Eq.(1) is exponentially stable if one
can find two positive constants a, [ such that

IX®)|| < Blkolle™ for every solution of Eq.(1), Pandoffi
(1980).

Definition 2. The system given by Eq.(1) will be
termed asymptotically stable iff, for all consistent initial
conditions Xo, X(t) - 0 as t — o, Owens, Debeljkovié
(1985).

Definition 3. We call system given by Eq. (1)
asymptotically stable if all roots of det (sE — A), i.e. all
finite eigenvalues of this matrix pencil, are in the open
left — half complex plane, and system under
consideration is impulsive free if there is no X such that
x(t) exibits discontinuous behavior in the free regime,
Lewis (1986).

Definition 4. The system given by Eq. (1) is called
asymptotically stable iff all finite eigenvalues A, i = 1,..., ny,
of the matrix pencil (A\E — A) have negative parts, Muller
(1993).

Definition 5. The equilibrium x = 0 of system
given by Eq.(1) is said to be stable if for every € > 0, and
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for any to O J, there exists a 6 = d(g, to) > 0O, such that ||
X(t, to, Xo)|| < € hold for all t = to, whenever xo 00 Wk and
[Xo|| < &, where J denotes time interval such that J = [to,
+ ), to = 0, Chen, Liu (1997).

Definition 6. The equilibrium x = 0 of a system
given by Eq. (1) is said to be unstable if there exist a € >
0, and to O J, for any & > 0, such that there exists a t* >
to, for which || x (t*, to, Xo)|| = €holds, although xo 00 Wk
and |KXo|| < &, Chen, Liu (1997).

Definition 7. The equilibrium x = 0 of a system
given by Eq. (1) is said to be attractive if for every to O J,
there exists an n = n(to) > 0, such that lim x (t, to, Xo) =

tooo

0, whenever xo [1 Wk and |[Xo|| < n, Chen, Liu (1997).

Definition 8. The equilibrium x = 0 of a singular
system given by Eq. (1) is said to be asymptotically
stable if it is stable and attractive, Chen, Liu (1997).

Lemma 1. The equilibrium x = 0 of a linear
singular system given by Eq. (1) is asymptotically stable
if and only if it is impulsive—free, and o(E,A) O C” Chen,
Liu (1997).

Lemma 2. The equilibrium x = 0 of a system given
by Eq. (1) is asymptotically stable if and only if it is
impulsive—free, and lim x(t) = 0, Chen, Liu (1997).

to oo

Stability theorems

Theorem 1. Eq. (1), with A = |, | being the identity
matrix, is exponentially stable if and only if the
eigenvalues of E have nonpositive real parts.

Proof. The state response of singular system,
under consideration, is given by:

D
x(t)=e FACW EEP q qOC" @)

with the restriction on the vector of consistent initial
conditions, given by the following equation:

Xo = EEPXo . @
If E is written in diagonal form, then:
D Q'
e B ALLEED - 0 ®)
0 0

which decays exponentially when A o (0) implying that
Re(A) < 0, where o(Ai) denotes the eigenvalue spectar of
the appropriate matrix. We use upper index "D" to
indicate the Drazin inverz.

Because the eigenvalues of Qo are those
eigenvalues of E which are not zero, it has completed
the proof.

Theorem 2. Let Iq be the matrix which represents
the oprator on R" which is the identity on Q and the zero
operator on A. Eqg. (1), with A = |, is stable if an n x n
matrix P exist, which is the solution of the matrix
equation:

E'P + PE = g, ©®)

with the following propreties:

) P=P,
i) Pgq=0,q0\
iii)qTPq >0,q#0,q,
where:
Q=Wk=0 (-EEP @
A =10 (EED) ®)

where Wk is the subspace of consistent intial conditions.
0 denotes the kerrnel or null space of the matrix ().

Proof. If Eq. (6) has a solution P as above, E
cannot have eigenvalues with positive real parts. Hence,
Eqg. (1) is stable. Conversely, assume that Eq. (1) is
stable. Let P be defined by:

q'Pq =f expEYEqIF ot . ©
0

The integral is zero if @ O\ and is a finite number if
q OA . It is clear that matrix P is solution of Eq. (6) with
the properties, a), b), c), Pandolfi (1980).

Theorem 3. The system given by Eq. (1) is
asymptotically stable if and only if:

a) A is invertible and

b) a positive—definite, self-adjoint operator P on R"
exist, such that:

o) ATPE +E'PA =-Q (10)
where Q is self-adjoint and positive in the sense that:
xT(t) Qx(t) > O for all x O Wy / {0}, (11)

Owens, Debeljkovi¢ (1985).
Proof. To prove sufficiency, note that Wk n O(E) =
{0} indicates that:

V) = x' ()E"PEX(t) 12)

is a positive-definite quadratic form on W= All smooth
solutions x(t) evolve in Wi+ so V(x) can be used as a
"Lyapunov function". Clearly, using the equation of
motion Eq. (1), one can have:

V=x'(t) ET PE x(t) + x"(t) ET PE x(t) =
= (Ex(t)" PE x(t) + x'(t) ET PEx(t) =
= (Ax(t))T ET PE x(t) + X' (t) ET PA X(t) =

=x(t) AT PE x(t) +x"(t) ET PAX(t) =

=x'() Qxt) <AV, (13)
where:

A = min { X" QQx:V(X) = 1, x 0 Wi}, (14)
is strictly positive by Eq. (11).

Clearly:

0 < V(X() < V(Xo)e™ - 0 (t - o), (15)

so that Ex(t) and x(t) tend to zero as t —» ® as required,
Debeljkovi¢ et al. (1996a).
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Theorem 4. The system given by Eq. (1) is
asymptotically stable if and only if:

a) a is invertible and

b) a positive—definite, self-adjoint operator P exist,
such that:

x(@) (ATPE + E'PA)x(t) = —x' (t)Ix(t) for all XxOWk«  (16)

Owens, Debeljkovi¢ (1985).

Theorem 5. Let (E, A) be regular and (E, A, C) be
observable. Then (E, A) is impulsive free and
assymptotically stable if and only if a positive definite
solution P to:

ATPE + E'PA + E'C'CE = 0, a7

exist and if P4 and P2 are two such solutions, then ETP1E
= E'P2E, Lewis (1986).

Theorem 6. If there are symetric matrices B Q
satisfying:

ATPE + E'TPA = -Q (18)
and if:

XETPEx > 0 [x = Sty1 #0, 19

x'Qx> Ox = Sy, 20)

then the system described by Eq. (1) is asymptotically
stable if:

E-A
rank J 1 H=n 0OsOC, @n
1Q

and marginally stable if the condition given by Eq. (21)
does not hold, Muller (1993).

Proof. Assume P, Q according to Eq. (19, 20), then
by transformation:

0
_ i _
R_ﬁ% S=[S1 S ©2)

oU %\1
= O =
RES % Ny RAS 0 23)

120

where the identity matrices |1 and Iz are of dimension ny
and nz with n1 + n2 = n and the n2 x n2 matrix Ny is the
nilpotent of index v, one has:

Al P1 +PiAr =-sass = -Qr, @4)
with:
Pi=P]>0, @1=Q}>0, (25)

Therefore the system given by Eq. (1) is stable in
the sense of Lyapunov and is assymptotically stable if
and only if:

%|1—A1D
O=
rankD Q0 ny, OsOC, (26)
So, it is necessary to show that the condition:
E-A
rank Q =n, OsOC, (27)
1
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is equivalent to the expression, given by Eq. (26). By the
transformation of Egs. (22-23) one has:

|1—A1 0 %
rank% %:rank o st—Igg 28)
[] Q4 Q2 O

showing the equivalence of Eq. (26) and Eq. (27).

Theorem 7. The equilibrium x = 0 of a system
given by Eq. (1) is asymptotically stable, if an n x n
symmetric positive definite matrix P exist, such that
along the solutions of system, given by Eqg. (1), the
derivative of function V(Ex) = (Ex)T P(Ex), is a negative
definite for the variates of Ex, Chen, Liu (1997).

Proof. First, the regularity of (E, A) means that nx n
nonsingular matrices U and V exist, such that:

UEV = %1 0 AV = %\1 e 29)

N
and Eq. (1) is equivalent to:

z1=A1z1 +0

Nz2=0+2 (80)

here Q(Z4 Xz)T = X, a1 iS an n1 X Ny nonsingular matrix
and N is an n2 x nz nilpotent matrix, N1 + n2 = n.

Next, the fact that V(EX) is a negative definite
quadratic form for the variates of Ex means that an n x n
symetric matrix W exists with E'WE is a positive semi
definite with the rank of E'WE being equal to r, such
that:

V(EX) = —(Ex)T W(EX) @1)
or:
ATPE + E'PA = -ETWE. 32)
Letting:
P
P=UHT “"Ru, (33)
12 Poo
W
w=U" %&# 12§u , (34)
12 W2z
one has:

P11A1 + AlP12.= -Wi 1
P2oN + NP2 = -NW2oN (35)
P12 + AJP12N = -“Wi2N

where P11, P22 and are all positive definite matrices.

In the following it proven that N = 0. Suppose that
the form of nilpotent matrix N is

: (36)
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where Jj is a Jordan block matrix in which the diagonal
elements are all zero (i = 1,..., s), then all elements of
the first row of both NP2 and N'Wa N are zero. It
follows from the second formula of Eq. (35) that all
elements of first row P2oN are zero. If N = 0 is not true,
without loss of generality, this suposes that J1 # 0, then it
can be deduced that the element of the first row and first
column of matrix P22 is zero. This is not true since P22 is
positive definite.

Thus must be N = 0, in other words, and the linear
singular system described by Eq. (1) is impulse-free.

The positive definitity of matrix and the first formula
of Eq. (85) imply that is an asymptotically stable matrix.
It follows from Eq. (30) and N = 0 that lim x = 0 hold

t- oo
from x = Q (z1 z)T and the conclusion of Theorem 7
follows directly from Lemma 1.
Theorem 8. If an n x n symmetric, positive definite
matrix P exists, such that along with the solutions of
system, given by Eq. (1)D, the derivative of the function

V(EX) = (Ex)T P(Ex) i.e. V (EX) is a positive definite for all
variates of Ex, then the equilibrium x = 0 of the system
given by Eq. (1) is unstable, Chen, Liu (1997).

Theorem 9. If an nxn symmetric, positive definite
matrix P exists, such that along with the solutions of
system, given by Eq. (1),Dthe derivative of the function

V(EX) = (Ex)T P(EX) i.e. V (Ex) is negative semidefinite
for all variates of Ex, then the equilibrium x = 0 of the
system, given by Eq. (1), is stable, Chen, Liu (1997).
Theorem 10. Let (E, A) be regular and (E, A, C) be
impulse observable and finite dynamics detectable.
Then (E, A) is stable and impulse—free if and only if a
solution (B H) to the generalized Lyapunov equations
(GLE) exists.
ATP+H'A+C'Cc =0, @7)
HE=EP>0 38)
Proof. We assume that E, A, C are given by a
Weierstrass form

%r OD %1 0 o
= O = O
E=o Ng AT o
C=[C1Cg, (39)

where r is the number of finite dynamic modes, and N is
a nilpotent Jordan form.
Sufficiency. Partitioning:

P12H 11 HizH
P= @” 0 H= O 40
21 P2a[] 21 Heo[ (40)
one obtains:

HT1A1 + AlPy1 +Clcy =0,
Hl1=P1120, (41)

Hi2A1 + P21 + CIC1 =0,
HI2=N'P21, (42)

H21 +AlP12 + CC2 =0,

HEIN =Pi2, (43)
Hio + P22 +CICo =0,

HEN = NP2z, (44)

Note that (E, A, C) is impulse observable if and
only if:

ON") + O + ON") = R™™. 45)
Let

o = min{k | (N) =0, k > 0}. 46)
Then:

D(NT)O(—1 — D(NT)OH CZ + D(NT)CX —
=ONH*"'ct @7)

Pre-mutiplying Eq. @5) by (NN and
post-multiplying by (N)O‘_1 yields:

(NT)G*'I HZZ (NCX*'I + (NT)CX—'I P22(N)(X*1 -
=-(N"* " clca (N (48)

It follows again from Eq. (45) that both terms in the
left-hand side of Eq. (48) are zero, so that
(NT)O"1 Ccl=0. Hence, from Eq. (48), one obtains
(N T)(X_1 = 0, contradicting the minimality of a. This
implies that N = 0, so that (E, A) is impulse—free. Also,
since (A1, C4) is detectable, one can see from eq. (41)
that Aq is stable. Hence (E, A) is stable, Takaba et al.
(1995).

Necessity. Suppose that (E, A) is stable and
impulse—free. Then Egs. (41 — 44) are with N = 0. From
the hypotheses, there exists a solution P11 = 0 to Eq.
(40). Moreover, P12 = Hy2 = 0, P1 = Hzy = —-CJCy, and
P22, H2o are arbitrary satisfying Eq. (45). Thus it has
been shown that a solution (P, H) exists to Egs. (37 — 38)
with:

To - P11 0
E P-%Do o%zo. 49
Takaba et al. (1995).

Some assumptions and preliminaries are needed
for further exposures.

Suposse that matrices E and A commute that is:
EA = AE. Then a real number A exists such that AE-l =
A, otherwise, from the property of regularity, one may
multiply Eqg. (1) by ()\E—A)_1 so one can obtain the
system that satisfy the above assumption and keep the
stability the same as the original system.

It is well known that there always exists linear
nonsingular transformation, with invertible matrix T, such
that:

[TET TAT'|=
= {diag[E1 Ez] diag[A1 As]} (50)

where E4 is of full rank and Ez is a nilpoptent matrix,
satisfying:
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E8z0, E3"" =0, h=o0. 51)

In addition, it is evident:

A1 =AE1-11, Ao = AE2— 2. (52)
The system, given by Eq. (1), is equivalent to:

E1 xi(t) = A1 xq(t) + By u(t) , (53a)
E2 X2 = Az Xa(t) + Ba u(t) , (53b)

where x" = %}r XZE

Lemma 3. The system, given by Eq. (1), is
asymptotically stable if and only if the "slow" sub —
system, Eq. (53a) is asymptotically stable, Zhang et al.
(1998a)

Lemma 4. x4 # 0 is equivalent to EM*t'xz0, Zhang
etal. (1998a).

Define Lyapunov function as:

V(Eh+1x) — XT (Eh+1)T PEh+1X, (54)

where:
P > 0, P 0 R™ satisfying:

VE" %) > 0if E'x 20, when V(0)=0.

From Eqg. (1) and Eq. (58), bearing in mind that EA
= AE, one can obtain:

(Eh)T AT pEh*! 4 (Eh+1)T PAEN =

— _(Eh+1)T WEh+1 (55)
where W > 0, W O R™.

Eg. (65) is said to be Lyapunov equation for a
system given by Eq. (1).

Denote with:

degre det(sE — A) = rankEq = . (56)

Theorem 11. The system, given by Eq. (1), is
asymptotically stable if and only if for any matrix W > 0,
Eqg. (65) has a solution P > 0 with a positive external
exponent r, Zhang et al. (1998a).

Proof.

Necessity. Eq. (53) with u(t) = 0 is substituted into
Eqg. (55), obtains:

_HEY)T o mvi Wl EER O
_Eo oH W2 wsH Ho o &7

Notice that E1 is of full rank, so the equivalent form
can be obtained:

AIP1E1 + ETP1A1 = -ETWAEY (58a)
P2A2ES =0, (580)
where:
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_ 1 P2

TPT! :%E Ps%, (59)
_ 1 W2

Twr™ = I Ws%, (60)

If matrix pair (E, A) is asymptotically stable thus,
implies that (E1, A1) is asymptotically stable, too.

Let W > 0, then Wy > 0. Then Eqg. (58a) has a
solution Py > 0 with an internal exponent r. Let P> = 0
then P3 = 0, and the necessity is proved.

Sufficiency. For any W > 0 implies W1 > 0, so Eq.
(55) has a solution if and only if Eq. (58a) and Eq. (58b)
have solutions respectively, and P1 > 0. Therefore (E1,
A1) is asymptotically stable. Then the sufficency follows
immediattly from Lemma 3.

One can choose P3 > 0 since is not restricted and
one can have the following result immediately.

Theorem 12. The system, given by Eq. (1), is
asymptotically stable if and only if for any given W > 0
the Lyapunov Eq. (55) has the solution P > 0, Zhang et
al (1998a).

The conclusion is the same as in the case of the
very well known Lyapunov stability theory if E is of full
rank. If matrix E is singular then there is more than one
solution.

It should be noted that the results of the
preceeding theorems are very similar in some way and
are derived only for regular linear singular systems.

In order to investigate the stability of irregular
singular systems, the folowing results can be used, Baji¢
at al. (1992). For this case, the linear singular system is
used in the suitable canonical form, i.e.:

X1(t) = A1 xa (t) + Az xa(t) 61)
0=Asx1(t) + As Xo(t) . ©2)

Herewith, we examine the problem of the existence
of solutions which converge toward the origin of the
systems phase-space for regular and irregular singular
linear systems. By a suitable nonsingular transformation,
the original system is transformed to a convenient form.
This form of system equations enables development
and easy application of Lyapunov’s diect method (LDM)
for the intended existence analysis for a subclass of
solutions. In the case when the existence of such
solutions is established, an understimation of the weak
domain of the attraction of the origin is obtained on the
basis of symmetric positive definite solutions of a
reduced order matrix Lyapunov equation. The estimated
weak domain of attraction consists of points of the
phase space, which generate at least one solution
convergent to the origin.

Let as, before, the set of the consistent initial
values of Eqs. (61 — 62) be denoted by Wk Also,
consider the manifold m 0 R™". determined by Eq. (62)
as m = O(Az A4]). For the system governed by Eg.
(61-62) the set Wi+ of the consistent initial values is
equal to the manifold m, that is Wk* = m.
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It is easy to see, that the convergence of the
solutions of system given by Eq.(1) and system, given
by Egs. (61 — 62), toward the origin is an equivalent
problem, since the proposed transformation is
nonsingular.

Thus, for the null solution of Eqs. (61 — 62), the
weak domain of attraction is going to be estimated. The
weak domain of attraction of the null solution x(t) =0 of
system given by Eq. (61 — 62) is defined by:

Dg {Xo OR": xo O'm, (X, Xo),
lim ||x@t %) || -0} . 63)

too

The term weak is used because solutions of Egs.
(61 — 62) need not to be unique, and thus for every xo [
D there may also exist solutions which do not converge
toward the origin. In our case D = m = Wg*, and the
weak domain of attraction may be thought of as the
weak global domain of attraction Note that this concept
of global domain of attraction used in the paper, differs
considerably with respect to the global attraction
concept known for state variable systems, Baji¢ et al.
(1992), Debeljkovi¢ et al. (1996).

Our task is to estimate the set D. We will use LDM
to obtain the underestimate D of the set D (i.e. De (I D).
Our development will not require the regularity condition
of the matrix pencil (sE — A).

For the systems in the form of Egs. (61 — 62) the
Lyapunov-like function can be selected as:

V() =X (HPxit), P =P, ©4)

where P will be assumed to be a positive definite and
real matrix. The total time derivative of V along the
solutions of Egs. (61 — 62) is then:

V (x(t) = X1 (t) (ATP + PA7) xi(t) + X] ()PA2 Xo(t) +
+XBAZPX1 (1) ©9)

A brief consideration of the attraction problem
shows that if Eq. (65) is negative definite, then for every
Xo [0 Wi+ we have |x1({)|| -0ast - . Then |xa(t)|| - O
ast - oo, for all those solutions for which the following
connection between x1(t) and x2(t) holds:

x2(t) = Lxq (t), OtOR 66)

The main question is if the relation Eq. (66) can be
established in a way so as not to contradict the
constraints. Since it is not possible for irregular singular
linear system, then we have to reformulate our task to
establish the relation Eq. (66) so that it does not pose to
many addtional novel constraints to Eq. (62).

In order to efficiently use this fact for the analysis
of the attraction problem, we introduce the following
consideration that also proposes a construction of the
matrix L.

Let Eq. (66) hold. Assume that the rank condition:

rank [As A4] = rank A4 =r<ny, 67)

is satisfied. Then a matrix L exist, Tseng and Kokotovi¢
(1988), being any solution of the matrix equation:

0 =As+ A4l, (68)

where 0 is a null matrix of dimensions the same as As.

On the basis of Eq. (66), eq. (68) and Eq. (62), it
becomes evident that whenever a solution x(t) fufills Eq.
(66), then it has also has to fulfill Eq. (62). One can
investigate in more detail the implications of the
introduced equations. When they hold, then all solutions
of the system Egs. (61 — 62), which satisfy Eq. (66), are
subject to algebraic constraints:

0
Fx(t) = @f A Cx(t)=0. 69)

Assuming that V (x(t)) determined by Eq. (65) is a
negative definite, the following conclusions are
important:

1. The solution of Egs. (61 — 62) has to belong to
set O([As A4]) n O(L - DNI;

2. If rank F = n then judgement on the domain of
attraction of the null solutionis not possible on the basis
of the adopted approach, or more precisely, in this case
the estimate of the weak domain D of attraction is a
singleton: {x(t)[1J ([Az A4]) : x(t) =0};

3. If rank F < n, then the estimates of the weak
domain of attraction needs to be a singleton and it is
estimated as:

De = {x(t) (0 ": x(t) (O ([As Aa]) n
g(L-mioD. (70)

Now Eq. (65) and Eq. (66) are employed to obtain:

V (x(®) = X (t) (A1 +AzL)"P +
+P(A1 + Azl)) xq (1), 71)

which is a negative definite with respect to x¢(t) if and
only if:

QP +PQ=-Q Q=A+AdL 72)

where Q is real a symmetric positive definite matrix. We
are now in the position to state the following result.

Theorem 13. Let the rank condition Eq. (67) hold
and let rank F < n, where the matrix F is defined in Eq.
(69). Then, the underestimate De of the weak domain D
of the attraction of the null solution of system given by
Egs. (61 —62), is determinated by Eq. (70), providing (A1
+ Aol) is a Hurwitz matrix. If De is not a singleton, then
there are solutions of Eq. (61-62) different form null
solution, x(t) = 0, which converge toward the origin as
timet - + oo,

Proof. If the rank condition is satisfied, then for all
solutions of Egs. (61 — 62) that satisfy Eq. (66), one can
have x(t) (10 ([L — I]) and simultaniously, these solutions
x(t) O m = O(As A4]). Hence, according to Eq. (69), x(t)
00 ([As A4]) n 00 L - I]). However, Eq. (65) and Eq.
(66) implies Eqg. (71). Since (A1 +A2l) is a Hurwitz
matrix, then according to the well known results on the
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Lyapunov matrix equation, a unique symmetric positive
definite matrix P satisfying Eq. (72) exists. Hence, V
defined by Eq. (64) is a positive definite function with
respect to x¢(t), and its total time derivative along the
solutions of Eqgs. (61 — 62) constrained by eq. (66) is a
negative definite, so lim|ki(t)]] - 0 ast —» + o, as long
as Xo (11 ([Az A4]) n O([L-1]). But Eq. (66) implies also
lim [ka®)]| = lim |x1(t)|] -0 as t — +c0. So, with rank F <
n, more than one value of x(t) satisfies Eq. (69). Hence,
as O([Az A4]) n O(L - 1]) is not a singleton, solutions,
different form null solutions exist, which converge
toward the origin as time t — 4+ o. This proves the
theorem, Bajic et al. (1992).

LINEAR NON-AUTONOMOUS SINGULAR SYSTEMS

In the sequel, the generalized Lyapunov equations
(GLE) given by Bender (1987) are further studied for
continuous-time singular systems. Under a rank
condition, the stabilty of continuous—time singular
systems is related to the uniqueness of the solutions of
the Lyapunov equations, provided that the systems are
controlable. Furthemore, under certain conditions, the
controllability Grammians obtained from the Lyapunov
equations are guaranteed to be positive definite. All the
results are valid for both impulsive and non-impulsive
singular systems. Many definitions of cotrollability of the
infinite—frequency modes of singular systems have been
presented in the literature. However, for time—invariant
systems with a regular pencil (s — A), all these
definitions reduce down to two definitions of
controllability at infinity. These are analogous to the
difference between controllability and reachability.

The parameters of the Laurent expansion of the
generalized resolvent matrix (sE — A)_1 are a very useful
tool for analyzing singular systems. This is because they
separate the subspace spanned by solutions in the
eigenspace associated with finite eigenvalues of the
pencil (s — A) from the subcpace spanned by solutions
associated with infinite eigenvalues. The
infinite—eigenspace solutions can be termed as a
"impulsive" solutions in a continuous-time system.

The Laurent parameters can thus be used to split
the system, given by Eq. (2) into causal (nonimpulsive)
and noncausal (impulsive) subsystems.

The Laurent parameters, also known as
fundamental matrices, have played an important part in
the analysis of singular systems. Based on these
parameters, Lewis (1985) defined the controllability
matrices for the analysis of the controllability of
descriptor systems. Bender (1987) introduced the
reachability Grammians and associated them with
Lyapunov-like equations without the non-impulsive or
causality restriction.

Suppose that (sE — A) is a regular pencil. The
system, given by Eq. (2) is denoted by (E, A, B, C). Itis
known that the Laurent parameters { @k, -4 < k < o}
specify the unique series expansion of the resolvent
matrix about s = oo
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(sE - INBERE z (p,@'k , u=0 7
k=—p
valid in some set 0 < [s| <8 6 > 0. The positive integer p
is the nilpotent index. Two square invertible matrices U

and V exist such that (E, A, B, C) is transformed to the
Weierstrass canonical form:

E=U"EV! A=U"AV"

B=U'B C=cv' (74)
with:

- - g o d

SE"A‘ﬁo sN-ID

- 0 - g

B= 2%' ©= 2%' (75)

where J and N are in the Jordan canonical form and N is
nilpotent. Also, the corresponding Laurent parameters in
Weierstrass form are:

Ok ~0
%BJ O0 k>0
O od

=V U=0 (76)

O 0
HE w1 k<0

Remark 1. If E is nonsingular, the singular system,
given by Eq. (2) can be premultiplied by E ' to derive an
equivalent state—space system. In this case the following
simplifications occur:

@=LU=EV=IJ=E'A
Bi=E'B Cy=C, 77)

and N, B2 and Cz do not exist (e, N is a
zero—dimensional matrix). In this case the eigenvalues of
the pencil (sE — A) are the eigenvalues of E'A and are
obviously finite. If E = I, Eq. (2) is already in the
Weierstrass canoical form and one can have:

U=I,J=A andBy = B. (7 8)

We now summarize some useful propreties of the
Laurent parameters:

E@«— AQc1 = (k E— 1A = dokl (7

PE® = @ (80)

P1AQ1 = @1 @1
HA) k>0

e E((—%g B igr, k<o ®2)

E@A = AgE, for all k (83)

®EQ = GEx = @AG = QA

k<0, j=0 (84)
(¢ B! = (EgH" =0
@B £0, (E@)* " 20 (85)

-
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(E and Eq are projections on Hf along Hjy
—@1A and A@.1 are projections on Hy along Hr (86)

where HrF and Hi the spaces spanned by the
eigenvectors vj satisfying AiEvi = Av; corresponding to
the finite and infinite eigenvalues A, respectively. That is,
Hr is the subspace spanned by causal solutions and Hj
is the subspace spanned by noncausal or "infinite
frequency" or "impulsive" solutions. Note that if E is
nonsingular, HF = R", HI = 0, @ = |, ®E = E = Eq,
and @1 = @1A = A@1 =0.

The solution of a singular system can be
expressed directly in terms of the Laurent parameters.

X = @ Ex— @1 Ax({t) =

t
= %%‘“ Xo +Ie‘p°A(t'T) @ Bu(r)drE—

o]

O m-1 O

%—m BT X0 + Y (-4 prBu®pd  (€7)
5 i

Y0 = C (@E - ¢1A) XO) ©9)

where, i = 0 and m = 0. As indicated by the property of
Eq. (87), the Laurent parameters can be used to
separate the causal solution subspace from the
noncausal solution subspace.

Definition 9. If the integral exists, the causal
continuous-time singular system reachability Grammian
is:

< T,T,
GS = [ qo ™ BB ™ it . (89)
0
Bender (1987).

The noncausal continuous—time singular system
reachability Grammian is:

-1
e=-> BB gk. (90)
k=-mu
The continuous-time singular system reachability
Grammian is:

G*'=GE + Gk ©1)

If the integral does not exist, only GRtis defined,
Bender (1987).

The columns of (EGS E'gb = GS' span the causal
reachable subspace, and the columns of Gft span the
noncausal reachable subspace, which is the subspace
“reachable at «". By the same argument the columns of
G span the reachable subspace for the entire system.

Theorem 14.

i) If GE' exists, it satisfies
@ (EGTAT + AGSE") @ = -@BB'0 . ©2)

i G always exists and satisfies
@1 (EGSE" + AGTAT) ¢4 = —p1BBTg'4 . 93)

il Suppose the range of R® (see Apendix B)
contains the range of @ (i.e., the pair (J, B1) is
reachable). Then if all finite eigenvalues of the pencil (sE
— A) have real part less than zero, eq. (92) has a

symmetric solution G&' which satisfies:
x' G&'x > 0 for all x such that:
x=E"@ wz0. ©4)

Further, @ EGZ ET @ is unique.

Conversely, if Eq. (92) has a symmetric solution
satisfying eq. (94), then @E G E'qh is unique and all
finite eigenvalues of the pencil (sE — A) have real part
less than zero.

iv) If the rang of Rne contains the range of @+A
(i.e., if the pair (N, B2) is reachable), then Eq. (93) has a
symmetric solution G&' satisfying:

x' GS% x < 0, for all x such that:

x=ATqy wzo. (95)

Further, @1 AGS: AT @'y is unique.

For the sake of breavity the proof is ommited and
can be found in Bender (1987).

Definition 10. A singular system is asymptotically
stable if and only if its slow subsystem (I, J, By, C4) is
asymptotically stable. The slow subsystem is
controllable, or equivalently, the singular system is
R—controllable, if and only if:

rank [By, J By,..., J™' Biy] = ny (96)

where ny = degree(det(sk — A)) is the dimension of the
slow subsystem. The fast subsystem is controllable if
and only if:

rank [Bz, NBz,..., Nu' Bz] = n—ny. 97)

Dai (1989).
The controllability of a singular system implies
both its slow and fast subsystems are controllable.
Definition 11. For the continuous-time descriptor
system (E, A, B, C), the slow controllability Grammian is

* TT,
Gs=[qe?™ BB ™t @ dt, ©8)
0

provided that the integral exists. The fast controllability
Grammian is:

-1

Gf = ) @BB g (©9)
=u

The controllability Grammian is:

G =GS+Gf, (100)

Zhang et al. (1988b).
[t can be seen that there is no significance
difference between Definition 11 and Definition 9.
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In Weierstrass canonical form, given by Eq. (75),
the corresponding Grammians of G§ and Gf are

denoted by G and Gf respectively. From Eq. (75) and
Eg. (76), it can be easily shown that:

S=VvGE V' GF=VGV'. (101)
Proposition 1.
T
) EGEE" ¢° =GE, (102)
iy p1 AGFAT o'y =GF . (103)
Proof.

i) From Egs. (79-84), one can have:
« T,T
®EGE ET @ = [ *¥BBT e (JET@dt =
0
« T,T
= [ e ® BBTe®™ @dt = GE . (104)
0

i) From Egs. (79-84), one can also have:

-
@1AGIATG = ) ¢ 1ApBB gfAT =
k=—p

=) BB @ =Gf. (105)

In relation to the Grammians defined for (E, A, B,
C), the corresponding Lyapunov equations will be
stated.

Theorem 15.

) GS satisfies

GATQ + @A = -qBB'ql . (106)

il Gf uniquely satisfies:

GFATQY + AGF = —p4BB gl . (107)

iii) If the system, given by Eq. (2), is asymptotically
stable, then the slow subsystem is controllable if and
only if Eq. (106) has the unique solution 0 which satisfies:

rank(Gs) = degree(det(sE - A)). (108)

iv) The fast subsystem is controllable if and only if:

rank(Gf) = n — degree(det(skE - A)). (109)

v) If the system, given by Eq. (2), is asymptotically
stable, then system given by Eq. (2), is controllable if
and only if:

G°=GS$+Gf>0. (110)

Proof.

i) and i) can be easily established from, Bender
(1987), with Eq. (102).

i) When Eq. (2) is in Weierstrass canonical form,
given by Eq. (75), such that:

270

C
- G12§ (111)
T

then Eq. (106) reduces to:
c ur 0 0 pO
i1 Giz & O, 0%
1o GeoH 0 0O 0

c T
71 Giz BiB1 0
= 112

0
That is:
G51JT+JGE = -B4BT, (113)
JGi2 = 0. (114)

Since Eq. (2) is asymptotically stable, then G12 = 0
and it is obvious that G§1 >0 is the unique solution of
Egs. (113-114) if and only if the slow subsystem is
controlable. Condition, given by Eq. (109) ensures that
Go2 = 0, and hence:

G = %351 8% (115)

is the unique solution of eq. (112).
iv) When Eqg. (2) is in Weierstrass canonical form,
given by Eq. (75) such that:

- 11 Gt
Gf = %T c % (116)
21 Gzz2

then Eq. (108) reduces to:

11 Go1 0 0
- = 11
%& G&% % NGEzNTg % Bzelg o

Hence G11 = G21 = 0. Notice that N is nilpotent
and G2 =0 is the unique solution of;

GS> - NGSoNT =BoBY . (118)

The uniqueness of:

o 0
G —% ngé (119)

then follows. Furthemore, G52 > 0 if and only if the fast

subsystem is controllable, and now Gf satisfies (Eq. 109).
v) From Eq. (115) and Eq. (119), follows:

- - - c
G°:G§+G$=§5c;1 Gci g (120)
22

If the system, given by Eq. (2), is controllable, both
the slow and fast subsystem are controllable. Hence if
system, given by Eq. (), is stable, then Eq. 2) is
controllable if and only if G° > 0.

Remark 2. If E is nonsingular, then @ = | and @1
= 0. In this case, the controllabilty Grammian G¢

becomes
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« T
G® = [eMBBTeM dt . (121)
0

It can be seenthat G satisfies:
G°AT + AG® = -BB" (122)

Therefore, normal systems and singular systems
have unified Grammian form and Lyapunov equations,
Zhang et al (1988b).

CONCLUSSION

Singular systems are also present in processes
and chemical engineering, see Bogdanovi¢ (1992),
Lapidus et al. (1961) and Daley, Wang (1994). Some of
the mathematical model have been shown to illustrate
this fact.

To assure asymptotical stability for linear singular
systems it is not enough only to have the eigenvalues of
matrix pair (E,A) in the left half complex plane, but also
to provide an impulse—free motion of the system under
consideration. Some different approaches have been
shown in order to construct Lyapunov stability theory for
a particular class of linear singular systems operating in
free and forced regimes.

APPENDIX A - Unussual notations

With O(F) and 0O(F) we will denote the kernel (null
space) and range on any operator F, respectively, i.e.:

O(F) = {x Fx =0, OxOR", (A1)

OF) ={yOR™ y=Fx, xOR", (A2)
with:

dim O(F) + dim O(F) = n. (A3)

APPENDIX B - Reachability Grammians

We begin this section by defining the reachable
subspace in terms of the Laurent parameters. We follow
the deveopment of Lewis (1985). We shall define the
reachable subspace in terms of the following
reachability matrices:

Re = (@B ... ;-1B), (B1)
Rnc = (@-UB ... ¢4B), (B2)
and:
R = (Rnc Ro). (B3)

The subscript ¢ implies that the columns of Re
span the reachable part of the causal solution subspace,
and the subscript nc implies that the columns of Rne
span the reachable part of the noncausal solution
subspace.

Definition B1. For a continuous-time singular
system, the causal reachable subspace is the space
spanned by the columns of Re, the noncausal reachable
subspace is the space spanned by the columns of R,

and the reachable subspace is the space spanned by
the columns of R, Lewis (1985).

Remark B1:

1) If the reachable subspace defined here for the
continuus—time system, given by Eq. (2) is equal to R",
the singular system is "controllable" in the sense of
Cobb (1984). That is a (4 — 1) — times continuously
differentiable input u(t) exist which will steer the
descriptor vector x(t) from any initial condition in the
range of E to any arbitrary location in the descriptor
space R" in finite time. This is an extension of (and if E
= | is equivalent to) the usual definition of reachability
for state-space systems.

2) If and only if the causal subsystem is
reachable, i.e., if the pair (J, B1) is reachable, do the
columns of span R¢ the range of @E. That is, the
columns of R¢ span the causal solution subspace.

3) If and only if the noncausal subsystem is
reachable, i.e., if the pair (N, B2) is reachable, do the
columns of Rne span the range of @4A. That is, the
columns of Rne span the noncausal solution subspace.
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Singularni sistemi predstavljeni su u matemati¢kom smislu kombinacijom dif-
erencijalnin i algebarskih jednacina, pri ¢emu ove druge predstavljaju
ograni¢enje koje diferencijalni deo i njegovo reSenje mora da zadovolji u
svakom trenutku. Singularni sistemi prisutni su U svim granama nauke i

tehnike.

U ovom radu navedeni su brojni primeri singularnih sistema koji se susre¢u u
hemijskoj i procesnoj industriji. Pored toga dat je iscrpan hronoloski pregled
postojecih rezultata na polju ispitivanja stabilnosti ove klase sistema sa poz-
icija Ljapunova sto sigurno predstavlja nezaobilazni korak u dinami¢kom ispi-

tivanju svakog sistema automatskog upravljanja.
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